End-User Programming for the Web

by

Michadl Bolin

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering
at the
MASSACHUSETTSINSTITUTE OF TECHNOLOGY
May 6, 2005
© Michad Bolin, MMV. All rights reserved.

The author hereby grantsto MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

AULNOT . .
Department of Electrical Engineering and Computer Science
May 5, 2005

Certified Dy. . ..
Robert C. Miller
Assistant Professor
Thesis Supervisor

ACCEPtEO DY . . o

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

End-User Programming for the Web

by
Michad Bolin

Submitted to the
Department of Electrical Engineering and Computer Science

May 6, 2005
In partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

ABSTRACT

On the desktop, an application can specify its user interface down to the last pixel, but on the
World Wide Web, a content provider has little control over how the client will view the page
once it has been delivered to the browser. This creates an opportunity for end-users who want to
automate and customize their web experiences, but the growing complexity of web pages and
standards prevents most users from realizing this opportunity. This thesis describes a
programming system named Chickenfoot that enables end-users to automate, customize, and
integrate web applications without examining their source code. It accomplishes this by
embedding a programming environment directly into the Firefox web browser, where end-users
can interactively develop programs that manipul ate the interfaces of web pages. The design and
implementation of the system's |language are described, as well as the results of a user study that
influenced the design. A range of applications built using Chickenfoot are also presented.

Thesis Supervisor: Robert C. Miller
Title: Assistant Professor

Acknowledgments

| would like to thank Rob Miller for being incredibly generous with histime and constantly
supporting of my work. | know of no other thesis adviser who takes such a strong and active
interest in his students, and | am extremely fortunate to have him as an adviser.

| would aso like to thank all the other members of the LAPIS group, especially Philip Rha,
Matthew Webber, and Tom Wilson. They were a constant source of support throughout this
process. | would also like to thank David Huynh and Vineet Sinah for their technical advice.

Finally, | am especialy thankful of the constant support of my parents, Tom and Linda, and my
sister, Katie. Their patience and encouragement throughout this project has been spectacular.

Contents

(@4 aF=T o1 (= R 1 01 oo [[o o SRS 14
Chapter 2 RE@E WOTK ..ot 22
21 ACCESS POINISTO thE WED.....ccuiiiiiiie e s 22
211 OULSIAE T BIOWSEN ...ttt et s ne s 22
212 LAY T = W 10TV 23
213 INSIAE thE BIOWSES ..ottt et 24

222 ANV 1 (0 0= (=0 J N F= Y/ o= 1 o o 24
23 PaLtern LANQUEAGEceeiiiiieiie ettt sne e snne e enneas 24
24 Modifying Page CONLENtccciveieieerieeieseesieseeseeeesreesre e sseesaeeaesreesseesesseesseeneesnes 26
25 Development ENVIFONMENTccooiiiieiieiiesieeie et ee et sre e s e see e ses 26
2.6 SUIMIM@IY ..ttt ettt sttt e st e st e sas e e e sabe e e bt e e s be e e s beeesabe e e sabe e e sabeeesabeeennneeennns 27
Chapter 3 Language DeSIgNcooiiiiieiieeie ettt sttt st sne b sns 30
G300 R = (= 0 0\ P> T 30
311 ONEr PatEINS......ceeiieiie ettt st sre b et e ree e 31
312 MatCh @S a Search CONEEXT........ccuiiruiriririee et 32

T U 10 0= (o] ISR 33
321 WWED FOIMIS. ..ottt ettt bbbt e 33
3.2.2 Navigation and Page LOAING........cccvererririeiieie e 35

TG T =0 1= 1Y Koo [1 o= (o] o 1 36
331 INSErtioNS aNd DElELIONS.........cooiiieieeii e e e 36
332 Specia Chunks: Link and BULTONccooviiiieiecee e 38
Chapter 4 APPHCALIONS. ... ettt ae e sns 41
4.1 Adding File TYpe ICONSTO LINKS.....cccvcoiiiecieie et 41
4.2 SOrtING TADIES....ceeeeeeee et se e 42
4.3 Concatenating a Sequence Of PagEsS........cccuviveieieerieerieeeeseesie e sreesse e e enee e e eee e 43
4.4 Coloring Java Syntax and Linking to DOCUMENaioN..........ccceveererieneenieeie e 44
45 Highlighting Vocabulary WOIAS..........cccueueiieieiieieese e seesie s esee e s eee e 45
4.6 Integrating a Bookstore and aLibrarycccocoeeieeiineneese e e 46

Chapter 5 User INterface DESIGNcovieiiiiieieeee et nee s 49

5.1 LAYOUL DECISIONScocuieieeeiesieeieeieesteestesaeesseesessesssaessesseesseessssseesseensesseesseensesseensennensses 49
oI e 0c I T o | o PSR 50
521 EQITOr Panl ..o s 50
5.2.2 TOOISPANEL......coeeeee ettt ne s 51

oI T oo = I TS o 53
531 D= 1] o T o I o o = =TSP 53
53.2 THQOEIS PANE ..ottt ettt re et e ra e reeneeneennens 54
Chapter 6 Keyword PatterN SUMVEYocooi e st 56
G20 R IV 1 1 o P TRORRR 56
6.2 RESUIES...eeeeee et bt et e e b e nnes 57
Chapter 7 Keyword Pattern AlQOrithmoooeee i 61
7.1 FINAING TEXE BIODS ..ot e 61
7.2 Determining Candidate Text BIODScccoviieiieiiie e 63
7.3 Determining Candidate MaChes...........cooeeiiiiiiiiiii s 64
7.4 Evauating Candidate MatChesccoveeiiiiececre e 65
A T =V = U (o] o ISP 67
Chapter 8 IMPIEeMENTALIONceeiieeicieeee et reenreeneenns 76
8.1 Chickenfoot Model for aWeh Page...........ooeeiiiiiiiieieeseceee e s 76
8.11 IMIOLIVALTON......ceeeeii ettt b e et bbb enes 76
8.1.2 Building a Bridge between Firefox and LAPIS..........ccccooiiiii e 77

8.2 How Chickenfoot Operates on thiSMOE...........c.cccveieieere e 80
8.2.1 How the find() Command WOrKS ..o 80
8.2.2 How theinsert() and remove() Commands WOork...........ccccevvveveveeneecieseeseseene 84

8.3 Updatestothe MOGELooiiieiieeee et 85
831 UpdateSto thE DOMcouiiieiiee ettt nne 85
8.3.2 UPatES 0 RANGES.......coiiiiiiiieitieie ettt sttt nes 86

84 How Chickenfoot Scripts are INtErpretedccevveeeveeve e 90
8.5 MONItOring Page LOBAS........cceeiuiriiiieie ettt sttt 91
85.1 Listening for LOad EVENLS..........ccoviieieeie et eae e s nns 91
8.5.2 Waiting Until aLoad iS COMPIELE........ooeeieeiiiiieeeee e 91
8.5.3 Using Page LoadS for URL THiQQES....ccovieereeieseesieeieeseesieeeeseeeseeeeesseeseesnesseas 92
Chapter 9 CONCIUSION ... ettt sns 94
0.1 CONITDULIONS.ctitiriestisierieee ettt sttt ettt bbb b s enes 9
0.2 FULUTE WOIK ...ttt sttt et sr et et esneenbeeneenns 95
921 0 =0 [T TS o] £ S 95
9.2.2 BY DEMONSIIELION ...ttt sttt sttt st e s nae e nes 96

9.23
9.24
9.25
9.2.6
9.2.7

Appendix A
Appendix B

USEN INEEITACE. ...t st nns 97
RODUSINESS ...ttt bbb 98
EXtensions to Pattern LangUAagE..........occevvereereerieneesieenie et 98
Extensions to Command LanQUAJEeceereeriereerieesieseesieeeeseeseeeeesseessesneesnas 99
EVAIUBLION ...ttt ettt eenneene s 100

ChickenscratCh REfEN ENCE........coiiiiiiie s 102

PartitioNiNG HTIML TagScooeiiriirierieseeseerie ettt s 103

List of Figures

Figure 1.1 Three models of aweb page (WWw.go0gI€.COM)......ccuereeiiierierieineesieeie e 16
Figure 1.2 Filling out aform using Chickenscratch (Www.gmail.Com)ccocovriiveneninneennns 17
Figure 1.3 Chickenfoot as a sidebar in the Firefox web browsercccoeccveveevveceveeveecie e 18
Figure 1.4 Integrating Google Maps with arealty SIte.cccccevveciiierie e 19
Figure 3.1 Web form for requesting driving directions (Www.mapquest.Com)..........cccceeveereeneens 32
Figure 3.2 Googl e Preferences Page (Www.google.com/preferences)ooeeveeeeeveenenieeseennns 35
o U I 1= 0 T 7 = o OSSR 42

Figure 4.2 Table sorting demo: First the script adds headers to the column and then the user can
click on aheader to sort the column. Here, the user clicked on the header of the first
(010] 11 0] o 1SRRI 43
Figure 4.3 A "Show All" link embedded after a series of sequential links. Note that this link has
the same style of the surrounding links, so it appears like a natural part of the page. Clicking
thislink will cause the browser to start downloading the other links shown here and
concatenating their content to the current Web Page.........cocvveereeieneesieniee e 44
Figure 4.4 LAPIS Java-snippet parser used in Chickenfoot to hyperlink to Javadoc API and

syntax-highlight Java COMMENTS..........cccueiieiricre e 45
Figure 4.5 User viewing definition of prodigious as atooltip after running Vocabuarly script.. 46
Figure 4.6 Book availability in MIT Library inserted among Amazon purchasing options......... 47
FIQUre 5.1 EQITOr PaNEcc.ooieiieiece ettt st e ae e sneenneeneesneennenn 50
FIQUre 5.2 OULPUL PaNE.......ccouiiiecieeie e sieesesee st et e e e te e sseenseeneesseesseeneesseesseeneesneensens 51
FIQUre 5.3 PaterNS PANEooeiiiiiiiie ettt st be e sreeste e e sne e e 52
FIQUIE 5.4 ACHIONS PANE.......cc.i ittt st be e b e st saeesee e e e sneenre s 52
FIQUIE 5.5 TIIQOEN PANE.......eeiieeeeeeteeieeeesieeste et e ste e e s e s e e seeseesseesseeseesseesseessesseesseensesseessennsenneensens 54
Figure 6.1 Examples of textboxes used in the Web SUIVEYcccccceveeveeie e 57

Figure 6.2 Most users selected the left box rather than the top onefor "First Search” in Part 2

(= 7= Yo 1) PSS 59
Figure 7.1 Rendered model of web page with multiple textfields (www.google.com/advanced
S =2 (0 0) PRSPPI 62

Figure 7.2 DOM of the web page shown in Figure 7.2 (www.google.com/advanced _search)... 62

Figure 7.3 Map of text blob content to the partitioning element that containsit............c.ccccceen.... 63

Figure 7.4 Comparing text blobs with textfields for matches. Bounding boxes of text blobs
appear in gray and textboxes appear in black. Some edges of the boxes are extended to

ShOW NOW the DOXES [INE UP. ...eeeveeie ettt st 65
Figure 7.5 Labels that are candidate matches for multiple textfields.........cccoevveceveiecceceee, 66
Figure 7.6 Screenshot of the Y ahoo! home page with amiguous textfield match for " Search”

2= 2010 Xolo 0) PSP 67
Figure 7.7 Results of algorithm for resolving keyword patterns on Part 3 survey data............... 68

Figure 7.8 Y ahoo! home page (www.yahoo.com) shown in Part 3 of the user study. Users' names
for the search box included: "Search,” " Search the Web," "First Search,” and " Seach [sicC]
tNEWED TEXE BOX." ..ottt ettt st be et ene e nre et 69

Figure 7.9 Expedia home page (www.expedia.com) shown in Part 3 of the user study. Users
names for the return date field included: "return,” "return date,” "trip return,” and "Return
00100700 1 YRR 70

Figure 7.10 Amazon home page (www.amazon.com) shown in Part 3 of the user study. Users
names for the search box included: "Search Amazon," "ProductSearch,” "Searchl," and
= 0 10PN 71

Figure 7.11 MIT emergency contact information page shown in Part 3 of the user study. Users
names for the search box included: "MI12," "Notify Mi Two," "Emergency2Mi," "backup

contact mi," "Mi," "above person not available Mi," "Name MI," and "Contact 2 Mi."...... 72
Figure 7.12 Vivisimo home page (www.vivisimo.com) shown in Part 3 of the user study. Users
names for the search box included: "search,” "web search,” "Cluster," and "vivisimo
S < (0 0 TSP 73
Figure 7.13 Google advancd search page (www.google.com/advanced_search) shown in Part 3

of the user study. Users' names for the domain box included: "site,” "Domain," "only from,"

10

"Advanced Search Domain," "domain/site," "GOOGLE," and "return results from the site or

o[04 o SOOI 73
Figure 8.1 Creating the XHTML iN FIFEfOXoceiiiiiiieeeesee e 78
Figure 8.2 Recreating the DOM and generating the HTML in Java.......ccoccvveeieeiineesenieneeens 79
Figure 8.3 Construction of Mapping between Firefox and LAPIS...........cccoo e vevecce e 80
Figure 8.4 lllustration Of @ RANGE [32]......cciieeeirierieeiereereeee e e e e sae e sreeae e e nne s 81
Figure 8.5 Finding the node for the boundary-point for index 41ccoceveiieienenenieneenens 82
Figure 8.6 Implementation Of fINd...........ccoiiiiiiei e 84
Figure 8.7 DOM with Range content outlined With OVals..........cccceveevecce e 87
Figure 8.8 DOM with Range content outlined with ovals after insertion...........cccccveeveeieieenens 87
Figure 8.9 DOM with Range content outlined With OValS............ccoceieiiiniiienecc e 88
Figure 8.10 with Range content outlined with ovals after inSertion...........cccocceveveeiceienieseennens 89

11

List of Tables

Table 2-1 Comparison of features of existing web automation tooIS.cccccvecereecevcievieennee, 28
Table 3-1 The complete list of properties of the Chickenfoot Match objectccecvvvevieneee. 33
Table 7-1 Specia conditions for each type of component matched by this algorithm................. 66

Table 8-1 Benchmarking datafor overhead of method calls in different languages. These
benchmarks were made on a 1.7GHz laptop running WinXP, Firefox 1.0, and Java 1.5. ... 76

Table 8-2 RegionS fOr DOM NOUES.......c..coouevierieeieeeese e seesieeae e ste e ee e ae e e saeesesneesseenseans 82

Table 8-3 Rulesfor creating aMatch from aRange..........cocoveriiiiininie s 83

12

13

Chapter 1 Introduction

End-user programmers are users who are not formally trained in programming, yet need to
program in order to accomplish their daily tasks. Spreadsheets are often touted as the major
success story in end-user programming [1] -- millions of users successfully write formulasin
Microsoft Excel even though only afraction of them consider themselves programmers, or even
realize that they are programming at all. But when we ook to the web browser, which is the most
common tool for accessing information on the Web, we find that the existing tools for
automating and customizing interactions with the Web are insufficient for developers and end-
user programmers alike.

For example, consider a user who has compiled a list of homes that heis interested in through a
realty web site, but now he wants to see how far each home is from his workplace. He could visit
adite that provides driving directions, such as Google Maps, to plug in the addresses of each
house and his workplace to find the distance between them, but thiswill be tediousif the list of
housesislong. Ideally, this service would be provided by the reaty web site -- it could provide
its own web form for this task as many commercial sites have done by providing a"Store
Locator" that finds the nearest Target or Wal-Mart to your home. However, as user queries get
more intricate (now the user wants to find the home closest to his workplace that has a Dunkin'
Donuts on the way there and a McDonald's on the way back), the likelihood that aweb site can
support such a query diminishes. Thus, the user needs the ability to write his own scripts that will
automate his personal web tasks. To that end, the user needs atool that simplifies the process of
web scripting, so that the development and execution of the script take less time than it would to
do the task manually.

Most existing tools for scripting web pages [13, 15] require the user to work with the rawv HTML
of apage, as shown in Figure 1.1. In the string model, aweb site is represented as a string of
HTML, and usersidentify parts of the page by matching character patterns in the text. Because
the HTML for most web sites is machine-generated rather than written by hand, it is often
incomprehensible to an end-user programmer who istrying to script it, so writing scriptsin this
manner is time-consuming. Further, these scripts have a tenuous dependency on the current text
of aweb site, which may break if the site changes.

14

Other tools allow the user to work with the Document Object Model (DOM) of aweb site, in
which the page is represented as atree of HTML elements, as shown in Figure 1.1. Although the
DOM isthe standard model for documents on the Web [2], it is not an appropriate model for
end-user programmers because it still requires users to be familiar with the underlying HTML of
the page.

To address these shortcomings, my thesis presents Chickenfoot, an end-user programming
system for automating and customizing web applications through afamiliar interface — as web
pages rendered in aweb browser. Chickenfoot enables users to work with the rendered model of
aweb page, as shown in Figure 1.1. The rendered model represents a page as a two-dimensional,
typeset document, which aims to be consistent with the user's mental model of the page when
viewing it through aweb browser.

15

<html><head><meta http-equiv="content-type"
content="text/html;
charset=UTF-8"><title>Google</title><style><!--
body, td,a,p, -h{font-family:arial,sans-serif;}
.hi{font-size: 20px;}

.gq{color:#0000cc; }

/===

</style>

<script>

<l--

function sf () {document.f.q.focus();}

=5

</script>

</head><body bgcolor=#ffffff text=#000000

cellspacing=0 cellpadding=0 width=100%><tr><td
align=right nowrap><font

1link=#0000cc wlink=#551a8b alink=#ff0000 onLoad=sf ()
topmargin=3 marginheight=3><center><table border=0

“Google’

u< - bOdy tc a p : ” ‘ @ @ ‘ @

Google

Web Images Groups Mews Froogle Local™ ™ Desktop more »

E

Advertising Programs - Business Solutions - About Google

E2005 Google - Searching 8,058,044,651 web pages

Advanced Search

Google Search | I'm Feeling Lucky | Lengusge Tools

String model

In the string model, aweb pageis
represented as a string of HTML
text.

Document Object Model (DOM)
In the Document Object Model, a
web pageis represented as a
hierarchical tree of nodes. Thistree
is constructed from the string model
using an HTML parser.

Rendered model

In the rendered model, aweb pageis
represented a two-dimensional,
typeset document. The browser
creates this view by rendering the
DOM.

Figure 1.1 Three models of a web page (www.google.com).

16

Instead of using substrings of HTML or nodes in atree to identify elementsin a page,
Chickenfoot identifies el ements using keyword patterns. A keyword pattern is text that appears
in the rendered view of aweb page that can be heuristically evaluated to identify a component of
the page. For example, in the rendered model of google.com shown in Figure 1.1, Google

Sear ch is akeyword pattern that identifies the left button below the textbox. In this case, the
label of the button is the heuristic used to match the keyword pattern with the page component.

Chickenfoot uses keyword patterns in its programming language, Chickenscratch.
Chickenscratch is an extension of JavaScript [4] that includes commands that make sense for
operating on the rendered model of aweb page. For example, the Chickenscratch command for
following a hyperlink or pressing abuttoniscl i ck(), so the code for submitting a search query
to Googleiscl i ck(" Googl e Search").

Writing code that fills out web forms is a common goa for Chickenfoot users, so Chickenscratch
has commands to automate form entry: ent er, check, uncheck, pi ck, and cl i ck. These
commands take keyword patterns to identify web form elements, such as textfields, checkboxes,
dropdown boxes, and buttons. An example of using Chickenscratch to fill out aweb formis
shown in Figure 1.2.

Web Form Chickenscratch Code

Sign in to Gmail with your
Google Account

Usemame: Michael enter("usernane”, "M chael")
Password: enter ("password", "nypasswd")
Remember me on this

e check("renmenber")
Sign in click("sign in")

Forgot wour password?

Figure 1.2 Filling out a form using Chickenscratch (www.gmail.com)

Chickenscratch also has commands named i nsert and r enove that allow usersto add and delete
content from a page, respectively. Thisis especially important for users who wish to amend
pages with their own content, or to integrate content from multiple web sites.

Users can access other sites by using Chickenscratch commands: go(ur ') will create arendered
model of theur| by loading it in the browser, and f et ch(ur 1) will create the model without
displaying the page. Once the model has been created, Chickenscratch hasafi nd command that
takes a pattern and returns any matches that it finds. The pattern may be a keyword pattern or a
text constraint, which is a pattern that can refer to the implicit structure of a page. An example of

17

atext constraintisi mage in first row in second table. Likekeyword patterns, text
constraints can be created from the rendered model of a page aone.

To ensure that the rendered model will be available when devel oping Chickenscratch code,
Chickenfoot isimplemented as a sidebar inside the popular Firefox web browser, as shown in
Error! Reference source not found.. From here, users can experiment with aweb site by

writing and running Chickenscratch code.

& Google - Mozilla Firefox

File Edit View Go Bookmarks Tools Help
<I| 22 . i @ E]l\[http: ffwww.google.com/
Chickenfoot Script Editor B
S{rﬁ E @ ?::} File: sat-words.js b
Tegall
tr

gol 'http: //www.
//http: /v £d;

t.com/test/sat-words_html’,

-warist.edu/011144 _html

var doc = document.implementation.cresteDocument (™",
doc_async = false;

doc.load ("http://www.bolinfest.com/test/sat-words.xml'|:

words = {}
elements = doc.getElementsByTagName ("word")
len = elements.length
for (var i = 0; i < len; i++) {
node = elements.item{i)
words [node.getittribute | 'wozd')]
= node.gethAttribute(|'def"’)

i

// using & full border prevents
// title attribute from being displayed on mouseover |
style = 'background-coler: §FFFFCC; border-top: selid [w|

il J B

Debug | Patterns | Actions | Triggers |

e’

[1gnore all triggers

Name Included Pages Enabled? ||
TargetAlert e Fl
SAT Tutor http:/fwww.nytimes, com™ 1]
Multipage http:/fwww.google. comjsearch® []
Hyperlink Java Types http:ff=sun.com™]
Done

) [=1
e

[¥] @ [T,
CO O 8 [e
Web Images Groups News Froogle Local™*™ Desktop more »

Google Search][I'm Feeling Lucky]

Advertising Programs - Business Solutions - About Google

©2005 Google - Searching 2,068 044,651 web pages

Figure 1.3 Chickenfoot as a sidebar in the Firefox web browser

Returning to the prospective homeowner mentioned earlier, he could solve his problem by using
Chickenfoot to create a script that would get the driving distance from Google Maps and
automatically insert it after the address on the realty site:

18

First, he would use the
fi nd command to
extract a house's address
from aweb site.

Shawmut Ave at W. Newton 5t

google map vahoo map

ves - cats are O - purrr

| ocation =

find('text just before "google map"')

Then, he would use go
to navigate to Google
Maps. There he would
useent er tofill inthe
addressdata, and cl i ck
to submit the query to
Google Maps.

Directions

mass ave 02139 |2 Shawmut, Shawmut Ave atW. Newton S

End address

go(' http:// maps. googl e.com ')

click('Directions')

enter('start address',

enter (' end

addr ess',

click('search")

'77 mass ave 02139')
| ocation + '

bost on')

Next, he would use the
fi nd command to
extract the driving
distance from the
directions page returned
by Google Maps.

End address:

Distance:

Shawmut Ave & W Newton

St
Roxbury, MA 02118

1.5 mi (about 2 mins)

di stance =

find('text just after distance')

Finally, he would use

i nsert toamend the
realty site with the new
information.

Shawnmt Ave at W. Newton St

zoogle map vahoo map

Distance: 1.5 mi (about 2 mins)

ves — cats are OF - purrr

insert('point just after "yahoo map"', distance)

Figure 1.4 Integrating Google Maps with a realty site.

Once the user has written this script, he will want to run it automatically whenever he checks a
listing on the realty web site. Chickenfoot provides atrigger systemthat lets a user define a
collection of URLs that will trigger a user's script automatically when a URL in the collection is
loaded, causing the user's script to be run.

Note that the user is able to create this script without looking at any HTML; all the interactions
that he needed to do with the above web pages could be done through the rendered model.

19

My thesis statement is. Chickenfoot allows usersto customize and automate web pages
without viewing their HTML sour ce. In defending this claim, my thesis makes the following
contributions:

Chickenfoot, an end-user programming system for web automation that provides users
with access to the rendered model of a web page, which abstracts the underlying HTML
from the user.

Chickenscratch, alanguage for operating on the rendered model.

The concept of keyword patterns, including aweb survey justifying their usability as
well as an agorithm for matching them with web page components.

A development environment for developing JavaScript code as well as extensions to
the Firefox web browser.

A trigger system that can execute Chickenscratch code whenever auser visits aweb site
so that the user's customizations automatically become part of the page.

I mprovementsto the W3C DOM specification for updating Rangesin the DOM after
mutation.

The rest of this dissertation explains the details of the Chickenfoot system. A survey of related
work in other Web automation systems is presented in Chapter 2. The design of Chickenscratch
isexplained in Chapter 3. Examples of applications that have been built using Chickenfoot are
provided in Chapter 4. The design of the development environment, including the trigger system,
isexplained in Chapter 5. A web survey that motivated the design of keyword patternsis
discussed in Chapter 6, and the algorithm used to identify keyword patternsis presented in
Chapter 7. The implementation of the Chickenfoot system is covered in Chapter 8. Finally,
future extensions to Chickenfoot as well as its contributions are discussed in Chapter 9.

20

21

Chapter 2 Related Work

Severa systems have addressed specific tasks in web automation and customization, including
adding links[4], building custom portals [5], crawling web sites [6], and making multiple
aternative queries[7]. Chickenfoot is amore general toolkit for web automation and
customization that can address these tasks and others as well. Here | survey some of the major
features of existing toolkits and compare how they are supported in Chickenfoot. The survey
includes:

programming languages, WebL [8] and Perl [9] (with Mech [10]),
macro recorders, WebV CR [11] and LiveAgent [12],
proxy-based tools, WBI [13] and Screen-Scraper [14],

browser extensions, Greasemonkey [15] and Chickenfoot [16],
and an experimental web browser, LAPIS[17].

A summary of the results of this survey is presented in atable at the end of this section.

2.1 Access Points to the Web

When doing atask on the Web, the first step is to access a web page. Though web pages are
always accessed by sending a request to a server, the point of access can be significant in
determining the page that is returned. The three types of access points that are seen in web
automation toolkits are: outside the browser (usually from the command-line), within a proxy,
and inside the browser.

2.1.1 Outside the Browser

Most modern scripting languages, Perl, Python, Ruby, etc., have a method for taking a URL,
connecting to it, and downloading its content. In these languages, every connection to the Web is
an independent request with no sense of state. The main benefit of this method is that programs
can be run from the command-line, which is helpful in automating access to the Web.

Unfortunately, a URL accessed in this way often returns different content than it does when

accessed through a browser. Web browsers support cookies, session variables, and client-side
scripting, al of which affect the way web pages are displayed. Because these scripting languages

22

do not support these advanced features, the content that they download may not be consistent
with the content that the user is accustomed to viewing in his web browser. For example,
accessing the home page for an e-commerce site that uses cookies to display personalized
information will have different content when accessed through aweb browser than it does when
downloaded by a Perl script run on the command-line.

Also, although most pages can be accessed directly by their URL, some pages are dynamically
generated only after a series of navigations, and other pages require a secure connection to be
established before the URL can be accessed. These "hard-to-reach” pages[11] cannot be
accessed by the independent requests made by scripting languages because they lack the sense of
state required to reach them. Because not every URL can be accessed from outside the browser,
and even the pages that can be accessed outside the browser may not be consistent with what
users expect, accessing pages in thisway isinsufficient for a web automation system. In addition
to the scripting languages listed above, even WebL [8], a programming language designed for
the Web, suffers from this problem.

2.1.2 Within a Proxy

The next-best solution isto use a proxy that sits between the user's web browser and the Internet.
When a user requests a page from his browser, the proxy may intercept the request, or the
server's response, and modify it before it returns to the browser. Thisis a good approach, in that
the activity of the proxy is hidden from the end-user and is therefore seamlessly integrated into
the user's web experience. Another benefit is that the effects of a proxy can be seen through any
browser on the user's desktop, so toolkits that use proxies do not force the user to use a particular
browser.

However, there are two major limitations of using a proxy in aweb automation toolkit. The first
isthat a proxy cannot read pages that have been encrypted by the browser, and the second is that
the proxy cannot have any effect on a page after it returnsit to the browser.

When a client accesses a site over a secure connection, every transaction with the siteis
encrypted. Because the proxy will only see the page after it has been encrypted by the browser,
any toolkit that accesses pages through a proxy will not be able to manipulate such a page.
Because security is becoming a greater concern on the Web, the number of sites that use
encryption islikely to increase, so this limitation of proxy-based toolkitsis significant.

Another growing trend is the heavy use of client-side JavaScript in web pages. Because there is
in an inherent latency in accessing information over the Web, some sites embed complex
JavaScript in their pages that can run in the client's web browser, after the page has been loaded.
Responding to user input with this client-side JavaScript is much faster than responding with a
subsequent request to the server, so this technique yields web applications whose performance
rivals that of desktop applications. Because this activity happensin the web browser after the
page has been loaded, a proxy has no knowledge of these events, so proxy-based toolkits cannot
respond to this activity.

All proxy-based toolkits are affected by these proxy problems, including WBI [13], LiveAgent
[12], and Screen-Scraper [14].

23

2.1.3 Inside the Browser

The third point of access, which is the one that Chickenfoot uses, is from inside the browser
itself. By embedding a web automation tool inside the browser, the tool is guaranteed to be able
to access the page as the user sees it, incorporating the effects of stylesheets, session identifiers,
etc. Unlike a proxy-based toolKkit, it can react to changes in the page that are caused by client-
side scripting. It also overcomes the proxy's restriction to insecure pages by letting the browser
decrypt encrypted pages before acting upon them. Both Chickenfoot and Greasemonkey [15] are
extensions to the Firefox web browser that take this approach.

2.2 Automated Navigation

To access pages that are generated dynamically or that require alogin, the user must fill out and
submit Web forms, so to provide programmatic access to any page on the Web, it is necessary to
automate entering form data on the Web as well.

Perl provides support for automating form interaction through its W : Mechani ze module,

often referred to as Mech [10]. Mech allows the user to write Perl code to automateaformin a
web page by supplying the names and values of the inputs the user wants to enter. From there,
Mech can submit the form data and return the result to the user. The user is restricted to using the
same names for input elements as the web site does. Thisis often undesirable for end-user
programmers because such names are often unintuitive to end users; for example, the name of
the search box on Googleisq.

Some toolkits give the user the ability to record macros where the user records the actions taken
to require access to a particular page, such asfilling out forms and clicking on links. Later, the
user can play the macro back to automate access to the same page. LiveAgent [12] takesthis
approach, recording macros with a proxy that sits between the user’s browser and the Web. The
proxy augments pages with hidden frames and event handlers to capture the user’s input, and
uses this information to play back the recording later. Unfortunately, because LiveAgent uses a
proxy, it suffers from proxy problems and therefore cannot automate pages that are accessed
over a secure connection.

WebVCR [11] is another macro recorder for web navigation that skirts the proxy problems by
using asigned Java appl et to detect page loads and LiveConnect [18] to instrument the page with
event-capturing JavaScript after the page loads. Because WebV CR runs as an applet inside the
browser instead of sitting behind a proxy, it can record all types of navigation.

2.3 Pattern Language

Once aweb automation toolkit has acquired input, its next step is usually to extract content from
the page, often referred to as screen-scraping. To do this, the toolkit needs to have arich pattern
language to describe the content to extract.

Probably the most primitive tool for extracting material from an HTML document is regul ar
expressions [20]. Though regular expressions (regexps) are a powerful technique for matching
patterns in ordinary text documents, using them for processing HTML is often undesirable
because by default regexps have a greedy “leftmost longest match” rule that consumes nested
HTML elements, returning one large match instead of the individual matches contained within it

24

[8]. Further, though precise, regular expressions are often cryptic. For example, suppose a
programmer comes across the following regular expression in a script:

AC([A Za-20-9] +_+) | ([A- Za-z0- 9] +\ - +) | ([A- Za- z0- 9] +\ . +) | ([A- Za- z0- 9] +\ ++)) *[A-
Za-z0- 9] +@ (\wH\ - +) | (\w+\ L)) *\w{ 1, 63}\. [a-zA-Z] {2, 6} $

What is this regex supposed to match? Is the regex correct? It is hard to answer these questions
without studying it in detail. Thisregex isintended to match an email address; however, its
author admits that it fails to match email addresses that use P numbersin the host portion[20].
Thus, despite the power and precision of regular expressions, it is still difficult to get them right.
If thisisthe case for mature software developers, then what hope do end-user programmers
have?

More importantly, regexps require the user to become intimately familiar with the HTML of the
page from which they wish to abstract information. This forces the client to use the string model
of an HTML document rather than the more expressive DOM that is inherent within it.

The commercial Screen-Scraper tool [14] builds on regular expressions by providing a pattern
type called an extractor pattern. An extractor patternis"ablock of text (usualy HTML) with
special tokens inserted where dataisto be pulled.” [21] In Screen-Scraper, an extractor pattern
may look likethis:

<p>This is the ~@XTRACTED TEXT@ |I'minterested in.</p>

where EXTRACTED TEXT isavariable that can be used later in the program. In practice, thisis no
more powerful than using capturing parentheses in regular expressions; however, this may be
more readable for a novice programmer.

A popular, more powerful pattern language for HTML and XML documentsis XPath [22].
Unlike pure regular expressions, X Path allows users to match nested nodes within a parent node.
Also, the syntax of an XPath expression closely resembles the form of the matches to the
expression, making it easier for other programmers to understand what the expression istrying to
match. For example, / doc/ chapt er [5] / secti on[2] selectsthe second sect i on of thefifth
chapt er of thedoc. However, this syntax has the same drawback that regular expression syntax
does, in that writing an XPath expression requires the user to become intimately familiar with the
HTML of the page. Even so, the fact that the majority of the sample scripts on the
Greasemonkey site use XPath expressions [23] is atestament that many script authors are willing
to plumb through asite's HTML in order to automate it. Also, as XPath is a W3C standard, Perl,
Java, and JavaScript al have libraries that support XPath queries, so XPath expressions may be
reused in other programming languages.

WebL [8] is a programming language for the Web that focuses on giving users a higher-level
language to describe web page elements. In WebL, the user provides names of HTML elements
to create piece-sets, where a piece-set is a set of piece objects, and a piece is a contiguous text
region in adocument. WebL provides various methods to combine piece-sets called operators,
including set operators such as uni on and i nt er sect i on, positional operators such as bef or e and
af t er, and hierarchical operators such asi n and cont ai n. Although these operators help produce

25

more readable scripts, the language does not eliminate the need to inspect a web page for the
names of its HTML elements, as the user must provide those to construct the basic pieces on
which the operators work. In thisway, WebL provides a pattern language that is similar to
XPath, but is more expressive because of the hierarchical operatorsthat it provides.

LAPIS[17] has a pattern language that is a cut above that of the previous toolkits called text
constraints. As mentioned in Chapter 1, text constraints is a pattern language that can refer to the
implicit structure of page. Thetext constrainti mage in first row in second tableis
devoid of HTML and regexp syntax, so it is much more appropriate for an end-user programmer.
It isaso possible for an end-user programmer to create this pattern from the rendered mode! of a
web page, rather than the string model. Finally, this pattern is more likely to succeed even if the
web site's HTML changes because it is based on lightweight structure rather than an overfitting
regexp pattern.

Unlike any of the previoustoolkits, LAPIS also makes it possible to create new patterns by
demonstration. To create a pattern by demonstration in LAPIS, a user can highlight a portion of a
document using the mouse, and LAPIS will offer various text constraints that match the pattern.
Thisis especialy helpful to users who have trouble formulating text constraints.

Indeed, LAPIS text constraint patterns are more accessible to end-user programmers than other
pattern libraries are, so Chickenfoot includes the LAPIS pattern library as part of its
implementation. However, Chickenfoot also builds upon this library by supporting keyword
patterns, which are patterns that use the spatial location of text in the rendered web page to find
matches. Keyword patterns are discussed in more detail in section 3.1. Though Chickenfoot
provides high-level patterns such as keywords and text constraints, it also supports X Path and
regular expressions, which users may aready be familiar with.

2.4 Modifying Page Content

Of the toolkits described thus far, only WBI, Greasemonkey, and Chickenfoot empower the user
to write scripts that change the appearance of aweb page in the user's browser. WBI uses a proxy
to intercept page requests, letting user-authored Java code mutate either the request or the
resulting page before it appears in the user's browser, and Greasemonkey and Chickenfoot can
run JavaScript code on a page just after it isloaded in Firefox. Each toolkit lets users manipulate
pages with a high-level programming language that ultimately enables the user to seamlessly
alter his web browsing experience (though WBI cannot mutate encrypted pages because of its
proxy problems).

In addition to manually running scripts, users of all three of these toolkits can write code that will
allow their scripts to be triggered automatically upon loading particular web pages. Users can
specify whether their script should run on al pages that are loaded in the browser, or only on
pages whose URL matches a special pattern. Additionally, both WBI and LiveAgent allow users
to schedule scripts or agents to be triggered by time of day rather than by URL.

2.5 Development Environment

One major drawback of most of the aforementioned tools (with the exception of the macro
recorders), is that they do not allow scripts to be developed inside the web browser. We consider

26

the ability to experiment with aweb site from the script development environment one of the
greatest advantages of Chickenfoot — the user does not have to wait to see how it will affect the
appearance of the web page because Chickenfoot gives immediate feedback on the rendered
page. LAPIS, apredecessor of Chickenfoot, took asimilar approach, giving the user an
interactive environment in which to experiment with pattern matching and web automation.
Unfortunately, the LAPIS web browser does not support web standards like JavaScript, cookies,
and secure connections, so it fails to provide the user with a complete web experience.

2.6 Summary
Table 2-1 isasummary of the various web automation toolkits discussed in this section.

27

Greasemonkey (2005)
Perl with Mech (2003)

Screen-Scraper (2002)

WebL (1998)
WBI (1997)

- Chickenfoot (2005)
x| LAPIS (2002)

x| WebVCR (2000)

x| LiveAgent (1997)

Can develop scripts
by experimenting
with web page

>

Can develop scripts X X
by demonstration

Development

Can develop scripts X X X | X | X X X
offlinein text editor

Supports keyword X
patterns

Supports text X X
constraintsin pattern
language

Supports regular X X X | X | X X X
expressions

L anguage

Supports X Path- X X X X X X
style expressions

Language usually Java- | Java- | Perl | Tcl | N/A | N/A | WebL | Java | N/A
used Script | Script

Scripts can run on X X X
secure pages

Cookies can be used X X X X X X
when accessing a
page

Uses a proxy X X X

Scripts can be X X X X
triggered
automatically when
apage loads

Scripts can be X X
triggered by time of
day

Features

Can learn patterns X
by demonstration

Table 2-1 Comparison of features of existing web automation tools.

28

29

Chapter 3 Language Design

Rather than creating an entire language from scratch, | designed Chickenscratch as an extension
of the JavaScript programming language [3]. In addition to the technical benefit of being ableto
take advantage of the existing JavaScript interpreter built into a web browser, this design
decision also facilitates the adoption of Chickenscratch by those with web design experience. To
that end, Chickenscratch provides a number of JavaScript objects and functions that are familiar
to JavaScript web programmers. These are listed in Appendix A.

However, most Chickenfoot users are focused on facilitating the manipulation of web content,
which means that users need to be able to programmatically describe elementsin the page on a
high level. Pure JavaScript provides an interface to a page's DOM, but thisis too low-level for
end-user programmers. To bridge this gap, Chickenscratch extends JavaScript by adding a
pattern matching system for identifying elementsin the rendered model. It also provides
commands to cut and paste these elements, as well as commands to automate user input to the
browser.

3.1 Pattern Matching

Pattern matching is afundamental operation in Chickenscratch. To operate on aweb page
component, most commands take a pattern describing that page component.

Chickenscratch supports two kinds of patterns: keyword patterns and text constraint patterns. A
keyword pattern consists of a string of keywords that are searched in the page to locate a page
component, followed by the type of the component to be found. For example, "Search fornf
matches a form containing the keyword Search, and " Go but t on" matches a button with the
word Go initslabel. The component typeisone of asmall set of primitive names, including

l'i nk, but t on, t ext box, checkbox, r adi obut t on, | i st box, and t abl e. When akeyword
pattern is used by a form manipulation command, the type of page component isimplicit and can
be omitted. For example, cl i ck(" Go") searchesfor ahyperlink or button with the keyword
"Go" initslabel. Caseisnot significant, socli ck("go") hasthe same effect.

A text constraint pattern combines alibrary of primitive patterns (such as! i nk, t ext box, or
par agr aph), literal strings (such as Go), and relational operators (e.g., i n, cont ai ns, j ust

30

before,just after,starts,ends). Text constraint patterns are generally used to identify parts
of apage for modification and extraction, although they can also be used for form manipulation.

Thef i nd command takes a pattern of either kind and searches for it in the current page, e.g.:

find("Search form'")
find("link in bold")

fi nd returnsawmat ch object which represents the first match to the pattern and provides access to
the rest of the matches. Here are some common idioms using f i nd:

/] test whether a pattern matches
if (find(pattern).hasmatch) { ... }

/1 count nunber of matches
find(pattern).count

/1 iterate through all matches
for (m= find(pattern); mhasMatch; m= mnext) {
/1 use m

}

A Mat ch object represents a contiguous region of aweb page, so it aso provides properties for
extracting that region. For example, if misamat ch object, thenm ht ni returns the source HTML
of theregion and m t ext returns the text of the region without the HTML tags. The complete list
of propertiesfor vat ch islisted in Table 3-1.

3.1.1 Other Patterns

fi nd actually accepts a number of types, the union of whichiscalled aPattern in
Chickenscratch. There are anumber of other Chickenscratch commands, such asi nsert and
cl i ck, that also accept aPat t er n as an argument. Each of the following qualifiesasaPpatt er n:

Text constraint (TC). A string whose content isavalid LAPIS pattern. Examples of TCs
aresecond row in first tableand3rd Wrd in Sentence. Seethe LAPIS
documentation [17] for a complete description of text constraints.

Keywords. A string of keywords that appear in the web page. If a string pattern parses
successfully asa TC pattern, then it isinterpreted asa TC pattern; otherwise, it is
interpreted as a keyword pattern.

Match. mat ch object returned by an earlier call tofi nd() . When supplied as an
argument to fi nd() it will simply return itself; however, it may be useful as an argument
to other commands that accept aPat t er n, such asrepl ace() .

Node. A Node in the Document Object Model (DOM) representation of the web page. As
Nodes are abstracted by Chickenfoot's rendered model of a page, they are not commonly
used by Chickenscratch script authors to define a Pat t er n; however, using aNode as a
Pat t er n is supported.

Range. A Range in the DOM. Like Node, it reflects the underlying structure of the page,
soitsuseasaPatt ern isnot favored, but it is supported.

31

3.1.2 Match as a Search Context

Thefi nd command is not only a global procedure, but also a method of Mat ch. In thisway,
pattern matching in Chickenscratch can be constrained to aregion of adocument by finding a
Mat ch for the desired region and then using itsf i nd method to restrict the search to the part of
the page delimited by the Mat ch. This technique could be used to locate rows within a particular
table:

table = find("third table after first heading")

for (row = table.find("row'); row hasMatch; row = row. next) {
/] use row

}

A Mat ch can be used as a context for avariety of Chickenscratch commands that take patterns,
including the web form commands seen in the examplesin Chapter 1. For example, consider a
page with multiple fields with the same label:

EZ2) starting Address E2) Ending Address
Your Saved and Recent Searches i Your Saved and Recent Searches h
(Save Home or Work) {Save Home or Work)
Address or Intersection (optional) Address or Intersection (optional)
City State ZIP Code City State ZIP Code
Options Get Directions
s LIS, & Canada
* Europe

Figure 3.1 Web form for requesting driving directions (www.mapguest.com)

In this case, thecommand ent er ("state", "CA") would be ambiguous because there are two
boxes |abeled State. This problem can be solved by first matching the appropriate section of a
page, and then using it as a context for for subsequent commands:

/1 starting address is context for enter
start = find("starting address table")
start.enter("address", "32 vassar st")
start.enter("zip", 02139")

/1 ending address is context for enter

end = find("endi ng address table")

end. enter("address", "1600 anphitheatre parkway")
end. enter("zip", "94043")

/1 no special context needed because | abel is unambi guous
click("get directions")

32

Contexts can help users focus on matching patternsin a particular part of a page.

range the DOM Range whose content matched the Pat t er n used to create this

object

next (possibly null) reference to the next Mat ch in the linked list of matchesto the
Pattern

hasMat ch | hoolean indicating whether this is the empty Mat ch

count number of remaining matchesin this linked list of matches (including this
Mat ch)

i ndex 0-based index of mat ch within the linked list of matches (undefined for the
empty Mat ch)

cont ent a DocumentFragment cloned from r ange

el ement | if the content of the Mat ch contains exactly a single Element node, then
el ement isnon-null reference to that Element

document | the document that was searched to create this Mat ch

ht m the HTML content of r ange

text thetext of ht m that isvisible in the rendered web page

Table 3-1 The complete list of properties of the Chickenfoot Match object

3.2 Automation

To be atotal web automation system, the user must be able to programmatically fill out web
forms and access web pages. This section describes how Chickenscratch is designed to support
these operations.

3.2.1 Web Forms

Chickenscratch has a number of commands to automate interactions with aweb site. Each
command listed in this section can take aPat t er n to identify the element to be automated.

Thecl i ck command takes a pattern describing a hyperlink or button on the current page and
causes the same effect as if the user had clicked on it. For example, these commands click on
various parts of the Google home page:

click("Advanced Search") // a hyperlink
click("l'"m Feeling Lucky") // a button

Keyword patterns do not need to match the label of the button or hyperlink exactly, but they do
need to be unambiguous. Thus, cl i ck(" Lucky") would suffice to match the I’'m Feeling Lucky
button, but in this case, cl i ck(" Sear ch") would be ambiguous between the Google Search
button and the Advanced Search link, and hence would throw an exception. (Exact matches take
precedence over partial matches, however, so if there were a single button labeled * Search,” then
thecl i ck command would succeed.) Buttons and links labeled by an image can be matched by
keywords mentioned in their ALT text, if any. The keyword matching algorithm is described in
more detail in Chapter 7.

33

Theent er command enters avalue into atextbox. Likecl i ck, it takes a keyword pattern to
identify the textbox, but in this case, the keywords are taken from the textbox’ s caption or other
visible labels near the textbox. Here is a script that logs into Gmail:

ent er ("usernanme", "M chael")
enter ("password", "mypasswd")

because User name and Passwor d were the visible labels to the left of the appropriate text boxes.

When the page contains only one textbox in the page, which is often true for search forms, the
keyword pattern can be omitted. For example, this sequence does a search on Google:

enter ("how many bathroons are there in the white house")
click("Google Search")

Checkboxes and radio buttons are controlled by the check and uncheck commands, which take a
keyword pattern that describes the checkbox:

check(“Yes, | have a password”)
uncheck(“ Remenber Me")

Finally, the pi ck command makes a selection from alistbox or drop-down box (which are both
instantiations of the HTML <sel ect > element). The simplest form of pi ck merely identifies the
choice by akeyword pattern:

pick(“California”)

If only one choicein any listbox or drop-down on the page matches the keywords (the common
case), then that choiceis made. If the choiceis not unique, then pi ck can take two keyword
patterns, the first identifying alistbox or dropdown by keywords from its caption, and the second
identifying the choice within the listbox:

pick(“State”, “California”)

All of these commands can be used either as a global procedure or in a context, asthey are all
methods of Mat ch. The following script is an example that exhibits all of the commandsin this
section to automate the Google preferences page shown in Figure 1.1:

go(' www. googl e. conml)

click(' preferences')

uncheck(' search for pages in any |anguage')
check(' english')

pick('results per page', '20")

click('save preferences')

Global Preferences (changes apply to all Google senices)

Interface Language Display Google tips and messages in: | English [»

If vou do not find your native language in the pulldown above, you can
help Google create it through our Google in Your Language program.

Search Language & Search for pages written in any language (Recommended)

O Search only for pages written in these language(s):

[Arabic O English [Indanesian] Romanian
] Bulgarian [Estonian [ttalian [Russian
O] catalan [Finnish [Japanese [Serbian
(] Chinese (Simplified)] French [Korean] Slovak
[Chinese (Traditional) [German [Latvian O Slovenian
] Croatian O Greek [Lithuanian [Spanish
[Czech] Hebrew [Morwegian] Swedish
[Danish [Hungarian [Palish [Turkish
[Dutch [Icelandic [Portuguese
SafeSearch Filtering Google's SafeSearch blocks web pages containing explicit sexual content from appearing in search results.

O Use strict filtering (Filter both explicit text and explicit images)
® Use moderate filtering (Filter explicit images only - default behavior)
© Do not filter my search results.

Number of Results Google's default (10 results) provides the fastest results.
Display | 10 |»| results per page.

Results Window] Open search results in a new browser window.

Save your preferences when finished and return to search. [Save Preferences

Figure 3.2 Google Preferences Page (www.google.com/preferences)

3.2.2 Navigation and Page Loading
Chickenscratch provides ago command to navigate to a URL in the current window:

go(String url [, Boolean force_rel oad])

The second argument to go isan optional reload flag; if true, it indicates that the browser should
navigate to the URL eveniif it is already the current URL being displayed in the browser
(effectively forcing arefresh). The reload flag is false by default.

If theur | input to go is not recognized as awell-formed URL, then ht t p: // is prepended to the
ur | before it attempts to navigate to the new page, so either of these commands can be used to
load the Google home page in the browser:

go(' http://ww. googl e. com ")
go(' www. googl e. com)

35

It isaso possible to load a page without displaying it in the browser by using thef et ch
command:

fetch(String url) // returns an object that del egates calls
/!l to the page's DOM once it has been | oaded

Pages accessed by go and f et ch are loaded asynchronously, which means that callsto go and
f et ch will return right away; however, any methods invoked on a page before it finishes loading
will cause Chickenfoot to hang until the page is|oaded.

To avoid locking up Chickenfoot, Chickenscratch has ar eady command that can test if apageis
loaded without invoking one of its methods. r eady can take one page, or an array of pages, and it
will return the first one that is finished loading, or nul | if al of the pages are still downloading:

ivy = fetch('fas.harvard.edu') // load the a page in the background
sl eep(10) /1 wait for 10 seconds
if (!(doc = ready(ivy)) {
alert('this siteis tooslow') // conplainif it is slowto |oad
}

Other times, the user will want to start downloading a number of pages and process them as they
come in. In this case, the user will want to be notified whenever a page is finished downloading.
For this, Chickenscratch has awai t command that takes a page, or an array of pages, and returns
the first page that finishes loading, removing it from the array (if it exists):

urls = [urll, url2, url3, ..., urlN
for (var i =0; i <wurls.length; i++) urls[i] = fetch(urls[i])
while (doc = wait(urls)) {
. Il process doc
}

Chickenscratch aso supports the following commands that allow programmatic access to the
browser buttons of same name:

back()
forward()
rel oad()

3.3 Page Modification

End-users must to be able to insert and remove content in order to to customize aweb site. This
includes moving content within the page, taking content from other pages, or creating fresh
content. Chickenscratch users can do al of thisin the context of the rendered modd!.

3.3.1 Insertions and Deletions

Chickenfoot offers three primitive commands for changing the content of web pages: i nsert,
remove, and r epl ace.

36

Thei nsert command takes two arguments: alocation on a page and afragment of web page
content that should be inserted at that location. Initssimplest form, the location is atext
constraint pattern, and the web page content is simply a string of HTML.:

i nsert("just before textbox", "Search: ")

The location can aso be derived from aMat ch object, but it must represent a single point in the
page, not arange of content. The bef or e and af t er commands can be used to reduce one of
these objectsto a point:

t = find("textbox")
insert(after(t), "Search: ")

The page content to be inserted can also be avat ch object, allowing content to be extracted from
another page and inserted in this one:

map = googl emaps. find("i nage")
insert("just after Directions", map)

Ther enmove command removes page content identified by its argument, which can be a text
constraint pattern or Mat ch object. For example:

renove(" Sponsored Links cell")

Ther epl ace command replaces one chunk of page content with another. It is often used to wrap
page content around an existing element:

di scount = find("10% of f")
repl ace(di scount, "***" + discount + "***")

The exact definitions for these functions are as follows:

i nsert (Position position, Chunk chunk) // returns a Mtch
renove(Pattern pattern) /1 returns a Position
repl ace(Pattern, Chunk chunk) /1 returns a Match

Like Pat t er n, aChunk isaunion of types rather than its own type. Each of the following
qualifies as a Chunk in Chickenfoot:

String. The text of the string will be interpreted as HTML if thereisHTML markup
present; otherwise, it will be interpreted as plaintext.

Match. Same asin section 3.1.1.

Node. Same asin section 3.1.1.

Range. Same asin section 3.1.1.

Link or Button. These are specia Chunks that are defined in the next section.

A Posi tionisaPattern that identifies asingle point in the web page. Not every Patt ern
identifies asingle point in aweb page; on the contrary, aPat t er n often refers to a nonempty

37

region of aweb page rather than an individual point. However, bef or e and af t er can aways be
used to produce aPosi ti on from aPat t er n:

before(Pattern pattern) // returns a Position at the start of the pattern
after(Pattern pattern) // returns a Position at the end of the pattern

If thePatt ern passedtoi nsert isnot aPosition,theninsert will throwanError.

The mvat ch returned by i nsert isareference to the content that was actually inserted into the
page that the client can use it as a point of reference for future insertions or deletions. Similarly,
renove returnsaPosi t i on where the deletion took place so the user can have areferenceto it if
he did not have one already.

The API for insert and remove make it trivial to implement r epl ace:

repl ace(pattern, chunk) ::= insert(renove(pattern), chunk)
Nevertheless, r epl ace isincluded as part of Chickenscratch to improve the readability of scripts.

Finally, although del et e would be a better name for the command that serves as the complement
of i nsert, del et e isaJavaScript keyword, so it would not be possible to define it as afunction
in Chickenscratch.

3.3.2 Special Chunks: Link and Button

When a Chickenscratch script needs to present a user interface, it can create links and buttons
and insert them directly into aweb page. Input buttons are created by the But t on constructor,
which takes alabel for the button and an Act i on to execute when it is clicked:

showAl | = function() { ... }
button = new Button ("Show All", showAll)
i nsert (position, button)

An Act i on iseither a JavaScript Function to be executed with no arguments, or a string whose
content isavalid Chickenscratch script to be evaluated. It isimportant to realize that thisis not
the same as doing this:

i nsert(position, '<input onclick="showAll" val ue="Show All">")

The difference is that the JavaScript code launched by the oncl i ck attribute will be run in the
browser's security model, which does not have full access to the browser, the user's filesystem, or
the network. By contrast, an Act i on passed to the Button constructor will be run at a privileged
level, giving the script alevel of access comparable to that of any desktop application.

ThereisalLi nk constructor that is analogous to But t on that takes a chunk of HTML to display
inside the hyperlink:

surprise = function() { ... }

38

new Li nk("What do | do?", surprise)
i nsert (position, surprise)

and thereisalso an ond i ck function to associate an Act i on with any Pat t er n on the page:

onClick("table", "alert('you clicked on the table!"')")

39

40

Chapter 4 Applications

This chapter describes afew of the applications that have been built using Chickenfoot.

4.1 Adding File Type Icons to Links

When a hyperlink points at a resource other than a web page (such as a PDF document, a ZIP
archive, or aWord document), it is often helpful for the link to be visually distinguished —first,
because the user may be actively scanning the page for one of these resources, and second,
because they may want to avoid them while casually surfing. Only afew web sites provide a
visua cueto thefiletype of ahyperlink. TargetAlert is aFirefox browser extension that |
developed that adds file type icons to hyperlinks on any web site.

TargetAlert was originally written in 217 lines of Javascript and XUL. | rewrote it in 29 lines of
Chickenfoot. The essence of the script is the following loop:

for (link = find('link'); link.hasMatch; link = link.next) {
href = link.elenent.getAttribute(' href')
if (m= href.match(/\.(\w)$/)) {
extension = ni1]
src = 'moz-icon://.' + extension + '?size=16";
insert(after(link), ' ")
}

}

The script works by finding every hyperlink in the page and inspecting the URL of its
destination. It uses asimple regular expression to extract the file extension, indicating the type of
filethat the URL pointsto. In creating the file type icon, the script exploits afeature of Firefox
that works only on Windows: URLSs of the form noz-i con: // . ext ?si ze=16 return theicon
associated with file extension . ext in the Windows registry. (Firefox normally uses these URLs
to display local directoriesin the browser.) Using the noz- i con protocal, it is simple to get the
icon for each file type, so the script uses this trick to insert an image that displays the appropriate
icon after each link. The result of amending these links with images is shown in Figure 4.1.

41

test.pdf test.pdf
test.rss test.rss
test.doc test.doc 2]
test.xls test.xls El
test.ppt [54]
test.zip test.p-pt |
test.zip

Figure 4.1 TargetAlert

4.2 Sorting Tables

Another feature that some web sites have, but many lack, is the ability to sort atable of data by
clicking one of its column headers. A Chickenfoot script can add this functionality automatically
to most tables by replacing every table header cell it finds with alink that sorts the table by that
column.

Most of the script is concerned with managing the sort, but here is the part that replaces headers
with links:

for (var table = find('table'); table.hasMatch; table = table.next) {
var heading = table.find('first row)
for (var h = heading.find('text in cell"'); h.hasMatch; h = h.next) {
var sorter = nakeRowSorter(table.index, h.index)
repl ace(h, new Link(h.text, sorter))

}
}

The makeRowSor t er function returns afunction that sorts the specified table by the specified
column number. It does this by copying every cell in the column to be sorted into a temporary
array, and then uses JavaScript's built-in quicksort function to sort the array. Because the order of
the cellsin the temporary array reflects the order that the rows should have when sorted, it usesa
map from the sorted cells to their rows to create a new array that contains the rows in sorted
order. Thelast step isto iterate over this sorted array of rows and replace the ith row in the table
with the ith element of the array. The results of this script can be seen in Figure 4.2.

42

| Name |Status | Name |Status | Name |Status
Michael [MEng Michael |MEng Chong Meng [PhD

Rob Faculty Rob Faculty Matthew |Senior
Min PHD Min PhD Maya MEng
Chong Meng [PhD Chong Meng [PhD Michael | MEng
Matthew |Senior Matthew |Senior Min PLD

Nidhi MEng Nidhi MEng Nidhi MEng
|Tm:u |Sem'0r |Tm:|:l |Seni0r |Phj]ip |}r’[Eng
Philip MEng Philip MEng Rob Faculty
|f'v’Ia§_.fa |f'v’[Eng |f'v’Ia§_.fa |f'v’|_'Eng |Tm:|:1 |S enior

Figure 4.2 Table sorting demo: First the script adds headers to the column and then the user can click on a
header to sort the column. Here, the user clicked on the header of the first column.

4.3 Concatenating a Sequence of Pages

Search results and long articles are often split into multiple web pages, mainly for faster
downloading. This can inhibit fluid browsing, however, because the entire content is not
accessible to scrolling or to the browser’ sinternal Find command. Some articles offer alink to
the compl ete content, intended for printing, but this page may lack other useful navigation.

Matthew Webber [24] has written a Chickenfoot script that detects a multi-page sequence by
searching for its table of contents (generally a set of numbered page links, with Next and
Previous). When atable of contentsis found, the script automatically adds a Show All link to it
(Figure 4.3). Clicking thislink causes the script to start retrieving additional pages from the
sequence, appending them to the current page. In order to avoid repeating common elements
from subsequent pages (such as banners, sidebars, and other decoration), the script usesa
conservative heuristic to localize the content, based on searching for an HTML element that
includes both the table of contents and the vertical midpoint of the page. The content element
from each subsequent page is inserted after the content element of the current page.

function showAl |l () {
var nost Recent Node = get PageCont ent ()
i nsert (after(npst Recent Node), "NEXT | NSERT")
for (var nl = find("nunberedlink in (first nultipage in [body])");
ml. hasMat ch;
nml = nl. next) {
openTab()
go(ml. el enent. get Attribute("href"))
i mport Node = get PageContent (). cl oneNode(true)
cl oseTab()
i nsert (before("NEXT | NSERT"), inportNode)
nost Recent Node = i nport Node

43

Theshowal | function gets executed when the user clicks on the Show All link. It locates the
table of contents and the links within it using the LAPIS patterns NumberedLink and Multipage,
respectively. These patterns were created by Webber. Once showaAl | has the table of contents, it
iterates over each link in the table of contents, makes a connection to it in a new tab window in
Firefox, getsits content, and inserts it to the original page.

HE LOmpare = | |«
12345678 % Hext >>Show All

Figure 4.3 A "Show All" link embedded after a series of sequential links. Note that this link has the same style
of the surrounding links, so it appears like a natural part of the page. Clicking this link will cause the browser
to start downloading the other links shown here and concatenating their content to the current web page.

4.4 Coloring Java Syntax and Linking to Documentation

The text constraint patterns used by Chickenfoot can draw upon therich library of patterns and
parsers implemented in LAPIS. Philip Rha's recent work [25] in using LAPIS to detect snippets
of other languages in documents with mixed syntax has made possibleit to use LAPIS's Java
parser to find and parse Java syntax even if it is embedded in aweb page. This Chickenfoot
script uses this parser for coloring embedded Java syntax:

for (¢ = find('Java. Conment'); c.hasMatch; c = c.next) {
repl ace(c, ' + c + '')

}
The script aso links each occurrence of a class name to its Javadoc documentation:

for (¢ = find('Java. Type'); c.hasMatch; ¢ = c.next) {
if (c.text in classURL) {
replace(c, ' + c.text + '")

}

The effects of these scripts can be seenin Figure 4.4. Also, the cl assURL mapping in the script
above maps a Java class name, such as St ri ng, to its Javadoc URL. This mapping is extracted
from a Javadoc web site using Chickenfoot:

go("j ava. sun.conlj 2se/ 1. 5. 0/ docs/ api ")

click("No Franes")

click("All C asses")

for (link = find('link"); link.hasMatch; link = link.next) {
classURL[link.next] = link.elenment.href

}

These scripts mutate the page by ssmply wrapping each match to the Java parser with the
appropriate style or hyperlink.

Note: If vou couldn't care less about Java applications, vou're already familiar with
object-oriented concepts, and yvou understand the Java code you've seen so far, feel

free to skip ahead to Writing Appletse.

This section dissects the "Hello World" application you've already seen. Here, again. is its code:

_I,-"*s*x
* The HelloWorldapp class implements an application that
* gimply displays "Hello World!™ to the standard outpuat.
*f
class HelloWorldapp {
public static void main(String[] args)
System.out.println("Hello World!™); //Display the string.
H

comments in green

hyperlink created

N\

Note: If vou co

't care less about Java applications fyou're already familiar with
object-oriented condepts, and vou understand the Javafcode vou've seen solfar, feel
free to skip ahead to Witing Appletse.

This section dissects the "Hello Wax]d" application vou've glready seen. Here_ again \is its code:

*# The HelloWorldipp clas
¥ gimply displays "Hello |1
cla=ss HelloWorldapp {
public =tatic void main(3tring[] args)
System.out.println{"Hello World!™),; //Di=splay the =string.

implements an application that
rld!'"™ to the =tandard output.

H
H

Figure 4.4 LAPIS Java-snippet parser used in Chickenfoot to hyperlink to Javadoc APl and syntax-highlight
Java comments

4.5 Highlighting Vocabulary Words
Students studying for college placement exams, such as the SAT, often work hard to expand

their vocabulary. One way to make this learning deeper isto highlight vocabulary words while

the student is reading, so that the context of use reinforces the word’'s meaning. One of my
Chickenfoot scriptstakes alist of vocabulary words and definitions (posted on the web) and

automatically highlights matching words in any page that the user browses. The script uses atitle

attribute to pop up the word’ s definition as atooltip if the mouse hovers over it as shown in
Figure 4.5.

45

for (word = find('word'); word. hasMatch; word = word. next) ({
if (word.text in vocab) ({
htm = '<span styl e="background-color: yellow' title=""
+ vocab[word.text] + '">'
+ word + ' '
repl ace(word, htm)
}
}

Like the Java Syntax Coloring script, the Vocab Word script finds matches to a pattern in aweb
page and uses CSS styles to draw attention to the matches.

Those who are doing most of the complaining, I do
they are (not) deliberately striving to sabotage the
effort. They are laboring under the delusion that th
when we must make prodigious sacrifices -- that t
already won and we can bg———"— BL
folly of that point of view e

|
the
separates our troops from their ultimate objectives
Tokyo -- and by the sum of all the perils that lie a

Figure 4.5 User viewing definition of prodigious as a tooltip after running Vocabuarly script.

4.6 Integrating a Bookstore and a Library

The last exampleis a short script that augments book pages found in Amazon with alink that
points to the book’ s location in the MIT library:

i sbn = find(' nunber just after isbn')
with (fetch('libraries.mt.edu/')) {

pi ck(' Keywords');

ent er (i shn)

click('Search")

link = find('link just after Location')

}

/] back to Amazon
if (link.hasMatch) {

i nsert(before('first rule after "Buying Choices"'), link.htm)
}

The script extracts the ISBN number from the book's page on Amazon using f i nd. Then it
fetchesthe MIT library page and fillsits search form using pi ck and ent er . cl i ck isused to
submit the search request, and when the search results page loads, the script usesf i nd to extract
ahyperlink to the book's availability and usesi nsert to sip the link into the Amazon page. The
final product of this script is shown in Figure 4.6.

46

MORE BUYING CHOICES

L3 used & new from $17.50
Dewey

Library - Stacks | QA76.758.B75
1995

Available for in-store pickup

now from: 334 99
Price may vary based on availability

Enter your ZIP Code

© Choose a store |

Hawve cne to sell? |.r Sell !EUFS hera i

Figure 4.6 Book availability in MIT Library inserted among Amazon purchasing options.

47

48

Chapter 5 User Interface Design

Embedding the Chickenfoot development environment inside a popular, modern web browser is
akey element of its design. If Chickenfoot were a standal one application, then it would be
difficult for end-user programmers to write scripts because the site to be scripted may not bein
view. Further, it would reduce the spontaneity of Web scripting because the user may be loath to
start another application when heisin the middle of doing something in his browser —if the user
encounters a problem from within the browser that could be solved by end-user scripting, then he
should be able to solve the problem from the browser. Creating a special web browser to contain
the devel opment environment, as LAPIS and Haystack [26] do, also suffers from the "reduced
spontaneity” problem. What's worse with these instrumented browsers is that users expect the
same level of support for their bookmarks, plugins, etc., asthey havein their preferred browser;
however, such support is often deficient because it is not a priority for the developers.

5.1 Layout Decisions

Embedding a devel opment environment into aweb browser is a challenge because it needsto
have enough screen real estate to be a useful tool without taking up so much space that it
interferes with the user's browsing. Chickenfoot isimplemented as a sidebar, just as History and
Bookmarks are in most web browsers, so it takes up no more space than other common sidebars.
This also means that the development environment can be hidden when it is not needed, but that
it can be opened quickly, encouraging spontaneous scripting.

Asthe user's main goal will be script development, the editor for writing the script is the top half
of the sidebar. Tools to help with script development are in the bottom half of the sidebar. Each
tool is used independently, so they are grouped together in atabbed pane so that only onetool is
visible at atime. This ensures that each tool has as much screen space as possible, and that the
editor isawaysin view when atool isbeing used.

The interface isimplemented in XUL [27], asthat is the standard windowing toolkit for Firefox.
Using XUL ensuresinternal consistency with the rest of the Firefox Ul.

49

5.2 Panel Design

The sidebar is divided into two panels. The Editor panel appears on top and contains a tool bar
and the script editor. The Tools panel appears on bottom and contains four panes, each of which
contains atool for script development. This section describes each of these components, with the
exception of the Triggers pane which is described in the next section.

5.2.1 Editor Panel

Asshown in Figure 5.1, the top of the interface contains atoolbar with iconified buttons that run
standard file input-output commands. Open, Save, and Save As. There is aso a Run button that
executes the current script and a Clear button to clear the editor. The Clear button is placed away
from the other buttons to reduce the chance that it is clicked by accident. A toolbar was chosen
instead of a menubar because it would be the second menubar in the interface, far from the top of
the browser window with its own File menu, which would be inconsistent with the way
menubars are used in other desktop applications.

The script editor appears below the toolbar. Because there is no room for standard Edit menu
commands in the toolbar, they are available in a context menu when the user right-clicksin the
editor. The standard keyboard shortcuts for the Edit commands work in the editor aswell, so
these commands should be learnable even if they are not visible. The editor also supports syntax
highlighting to help reduce syntax errors.

@ Q E CE:} File: sat-words.js ‘%‘

’ i o Lo AT P ! o g . -
gof'http://www.bolinfest . com/test/sat—words _html", tri—
var doc = document.implementation.createDocument (™",
doc.a3ync = false;

doc_load {("http://www_bolinfest_com/test/sat-words_xml

words = {}
elements = doc.getElementsByTagiName ("word™)
len = elements.length
for (var i = 0; i < len; i++) {
node = elements.item (i)
words [node _.getittribute { "word')]
= node _getittribute('def')

}

£F uaing a full border prewvents
f£F title attribute from being displayed on mousecwver

atyle = "background-color: $#FFFFCC; border—top: =solid

word = find({"word")
for | ; word_hasMatch; word = word_next)
if (word.toString({) in worda) {
html = "<span style="" + style + "7
+ "title="" + worda[word] + "">°
+ word LY

Figure 5.1 Editor Panel

50

5.2.2 Tools Panel

Thefirst panein the tools panel isthe Output pane, which is analogous to standard out and
standard error in other programming systems. The user can write to the Output pane using the
Chickenscratch command out put () , which takes a variable number of arguments and prints
each argument to the Output pane, in order. If a Chickenfoot script throws an error, then the error
will aso be printed in the Output pane. Vaues written to Output during the current execution of
the script appear in black whereas values from previous runs appear in gray. Thismakesit easier
to distinguish new output from old output.

Figure 5.2 Output Pane

The next two panes, Patterns and Actions, are tools that aid in development, but also attempt to
increase the learnability of the system. The Patterns pane presents the user with matchesto a
predefined list of LAPIS patterns that Chickenfoot has found in the page. Thisintroduces the
user to patterns that he may not have realized were supported in Chickenfoot, such as

Emai | Addr ess. The Patterns pane also lets the user type in a pattern and seeif it matches
anything in the page.

51

Figure 5.3 Patterns Pane

The Actions pane keeps alog of the user's actions in the browser: clicking on links, checking
radio buttons, etc. Thislog isformatted as alist of Chickenfoot commands. The goal isthat a
user can watch what appears in the Actions pane as he browses to learn what Chickenfoot code
he should write to automate what he just did. In this way, Chickenfoot can act as a macro
recorder, but unlike existing recorders, it indiscriminately records all actions instead of requiring
the user to start and stop the recorder. This lets users can go back and retrieve a copy the
transcript later, even though they may not have realized that such alog would be valuable at the
time it was recorded.

Figure 5.4 Actions Pane

52

Although the current implementation of Chickenfoot is not as reliable as LiveAgent or WebVCR
in recording every user action, the recorded transcript is more accessible in Chickenfoot than it is
in these tools, making it easier for end-users to edit and understand. Improving Chickenfoot's
recording capability is future work.

5.3 Trigger Design

For auser to seamlessly integrate Chickenfoot automations and customizations into his browser,
he should be able to trigger Chickenfoot scripts by his ordinary browsing habits. Chickenfoot is
designed so that it can run a script automatically when a user navigatesto a URL, even if the
Chickenfoot sidebar is not currently visible.

5.3.1 Defining Triggers

A user can define a collection of URLs that can trigger a script. Because a URL may trigger
multiple scripts, the user must also impose atotal order on the triggers so that Chickenfoot can
run them sequentially. The alternative would be for Chickenfoot to try to run all scripts that
matched atrigger in parallel; however, thiswould likely lead to concurrency issues.

Because Chickenfoot is designed for end-user programmers, asking users to provide aregular
expression to determine which URLs should trigger a script is too technical. Instead,
Chickenfoot uses the simple pattern matching scheme for URLs used by the Adblock Firefox
extension [28]. This scheme asks the user for a URL that may contain asterisks as wildcards, and
uses it to produce aregular expression for matching URLSs. To convert the URL to aregexp, it
escapes all of the special regular expression characters with backslashes (such as periods and
guestion marks) and replaces asterisks with the dot-star repeat operator. It also adds appropriate
start and end anchors, and makes the regexp case-insensitive. For example, if the user provides:

http://*.sun.conm *

then the regular expression produced to match this pattern will be:
[Mhttp:\/\/ . *\ . sun\.com/.*$/i

This regexp will match these URLSs:

http://ww. sun. com
http://java. sun. con!
http://java. sun.conftutorial/index.htmn

But not these;

http://ww. sunsets. cont
http://java. sun. net/

This scheme aims to be simple and to meet user expectations. Greasemonkey also uses this
scheme to define URL triggers.

53

5.3.2 Triggers Pane

The Triggers paneis shown in Figure 5.5. It has alist of the triggers that the user has configured.
Each item in the list shows the trigger's name, its URL pattern, and whether it is currently
enabled. From this pane, the user can add or remove triggers, temporarily disable or enable
triggers, or edit the name of atrigger. There is a separate checkbox for globally disabling all of
the triggers if the user wants to disable Chickenfoot temporarily without losing his current
settings in the Enabled? column.

Figure 5.5 Trigger pane

55

Chapter 6 Keyword Pattern Survey

One of the novel aspects of Chickenfoot is the use of keyword patterns to identify page elements,
such as" Search button" and"address textbox." A similar techniqueis used by Google to
associate search terms with pictures on the Web, and the success of Google Image Search is
testament to the viability of this approach. However, image el ements often have obvious |abels,
intheform of ALT or TITLE attributes, making it easier to deduce names for these images.

| was interested in testing this approach for naming web froms because | wanted Chickenfoot
usersto be able to write scripts that could uniquely identify form elements without having to
look up the web site's name for the element. Another possibility | considered was trying to
automatically produce logical names for form elements and inserting them into the web page,
near the element, providing users with names for elements that they could find in the rendered
model. Unfortunately, this seemed even harder than resolving keyword patterns because the
gpace of names to consider is so large. However, the converse is amore tractable problem
because on any given web page, the number of input elementsisrelatively small, making the
problem of resolving a user-provided name to a web form much more tractable.

To explore the usability of this technique when applied to web forms, | conducted a small study
to learn what kinds of keyword patterns users would generate for one kind of page component
(textboxes), and whether users could comprehend a keyword pattern by locating the textbox it
was meant to identify. The results collected in this survey were used as training data to motivate
the algorithm used to resolve keyword patterns in Chickenfoot. The algorithm's procedure and its
performance on the training data is explained in the next chapter.

6.1 Method

The study was administered anonymously over the Web. It consisted of three parts, alwaysin the
same sequence. Part 1 explored freeform generation of names: given no constraints, what names
would users generate? Each task in Part 1 showed a screenshot of aweb page with one textbox
outlined in red, and asked the user to supply a name that "uniquely identified" the marked
textbox. Users were explicitly told that spaces in names were acceptable. Part 2 tested
comprehension of hames that we generated from visible labels. Each task in Part 2 presented a
name and a screenshot of aweb page, and asked the user to click on the textbox identified by the

56

given name. Part 3 repeated Part 1 (using fresh web pages), but aso required the name to be
composed only of "words you see in the picture” or "numbers" (so that ambiguous names could
be made unique by counting, e.g. "2nd Month").

The whole study used 20 web pages: 6 pagesin Part 1, 8 in Part 2, and 6 in Part 3. The web
pages were taken from popular sites, such as the Wall Street Journal, the Weather Channel,
Google, AOL, MapQuest, and Amazon. Pages were selected to reflect the diversity of textbox
labeling seen across the Web, including simple captions (Figure 6.1a), wordy captions (Figure
6.1b), captions displayed as default values for the textbox (Figure 6.1c), and missing captions
(Figure 6.1d). Severa of the pages aso posed ambiguity problems, such as multiple textboxes
with similar or identical captions.

Subjects were unpaid volunteers recruited from the university campus by mailing lists. Forty
subjects participated (20 females, 20 males), including both programmers and nonprogrammers
(24 reported their programming experience as "some" or "lots," 15 as "little" or "none," meaning
at most one programming class). All but one subject were experienced web users, reporting that
they used the Web at least several times aweek.

Figure 6.1 Examples of textboxes used in the web survey

6.2 Results
We analyzed Part 1 by classifying each name generated by a user into one of four categories:

Visible if the name used only words that were visible somewhere on the web page (e.g.,
"User name" for Figure 6.1a)

Semantic if at least one word in the name was not found on the page, but was
semantically relevant to the domain (e.g., "login name");

Layout if the name referred to the textbox's position on the page rather than its semantics
(e.g., "top box right hand side™)

Example if the user used an example of a possible value for the textbox (e.g.
"Jjohnsmith056").

About athird of the names included words describing the type of the page object, such as "field,"”
"box," "entry," and "selection;" we ignored these when classifying a name. The prevalence of

57

"field" and "box" was a significant result in motivating the design of keyword patterns because it
suggested that these words should be ignored for a keyword pattern to ent er () where the
system already knows that it islooking for atextbox, but that these words should be treated as
special identifiersfor akeyword patterntofi nd() because it indicates the type of element that
the user istrying to match rather than keywords to match in the page. Indeed, supporting
keyword patterns that end with | i nk, but t on, t ext box, etc. was adirect result of this survey.

Two users consistently used example names throughout Part 1; no other users did. (It is possible
these users misunderstood the directions, but since the study was conducted anonymously over
the Web, it was hard to ask them.) Similarly, one user used layout names consistently in Part 1,
and no others did.

The remaining 37 users generated either visible or semantic names. When the textbox had an
explicit, concise caption, visible names dominated strongly (e.g., 31 out of 40 names for Figure
6.1awere visible). When the textbox had awordy caption, users tended to seek a more concise
name (so only 6 out of 40 namesfor Figure 6.1b were visible). Even when a caption was
missing, however, the words on the page exerted some effect on users' naming (so 12 out of 40
names for Figure 6.1d were visible). Thiswas a promising result in that when forced to name an
unabeled element, one quarter of users still opted to use the page author's words to come up with
aname rather than their own.

Part 2 found that users could flawlessly find the textbox associated with a visible name when the
name was unambiguous. When a name was potentially ambiguous, users tended to resolve the
ambiguity by choosing the first likely match found in avisual scan of the page. When the
ambiguity was caused by both visible matching and semantic matching, however, users tended to
prefer the visible match: given "City" asthe target name for go.com, 36 out of 40 users chose
one of the two textboxes explicitly labeled "City;" the remaining 4 users chose the "Zip code"
textbox, a semantic match that appears higher on the page. The user's visual scan also did not
always proceed from top to bottom; given "First Search” as the target name for eBay.com
(shown in Figure 6.2), most users picked the search box in the middle of the page, rather than the
search box tucked away in the upper right corner. This suggested that supporting ordinals such as
"first" and "second" to distinguish elements with similar labels would be difficult — other

resol ution techniques would need to be employed.

58

Figure 6.2 Most users selected the left box rather than the top one for "First Search" in Part 2 (ebay.com)

Part 3's names were amost al visible (235 names out of 240), since the directions requested only
words from the page. Even in visible naming, however, usersrarely reproduced a caption
exactly; they would change capitalization, transpose words (writing "web search” when the
caption read " Search the Web"), and mistype words. Some Part 3 answers also included the type
of the page object ("box", "entry", "field"). When asked to name a textbox which had an
ambiguous caption (e.g. "Search™" on a page with more than one search form), most users noticed
the ambiguity and tried to resolve it with one of two approaches: either counting occurrences
("search 2") or referring to other nearby captions, such as section headings ("search products’”).

59

60

Chapter 7 Keyword Pattern Algorithm

We now describe the heuristic algorithm that resolves a keyword pattern to aweb page
component. This algorithm is used for identifying the following components: textfields,
textareas, lists, drop-down boxes, push buttons, checkboxes, radio buttons, and hyperlinks. Given
akeyword pattern and a web page, the output of the algorithm is one of the following:

the component on the page that best matches the pattern
ambiguous match if two or more components are considered equally good matches
no match if no suitable match can be found.

The outline of the algorithm is as follows: first, the visible text in the page is carved up into
groups called text blobs. Each blob is then compared to the keyword pattern, and blobs that
include the pattern (within atolerance) are kept in alist. Once thislist has been created, the
algorithm compares each blob with each component of interest in the page, e.g., if itistryingto
match the keyword component with an element that lets users enter text, then textfields,
password fields, and multiline textareas are the components of interest. In this comparison, each
blob-component pair is given a score. If this set of pairsis nonempty, then the component of the
pair with the highest score is returned by the algorithm.

7.1 Finding Text Blobs

Thefirst step in resolving keyword patterns is to carve the visible text of an HTML document
into text blobs that the keyword pattern will be matched against. A text blob isavisible string of
content in the web page delimited by the opening and closing tags of a partitioning HTML
element. A partitioning element is an ancestor of a group of text nodes that appear together in the
rendered page. The heuristic used to decide whether an element is a partitioning element isits tag
name. For example, a <p> tag blocks off a paragraph in HTML, so all of the text nodes under that
node are likely to be part of the same blob. However, a tag is generally used to add boldface
for emphasis within a section of text, so it is not considered a partitioning element. The HTML
tags that represent partitioning elementsin this algorithm are listed in Appendix B.

Consider the snippet of aweb page shown in Figure 7.1 and its corresponding DOM in Figure

7.2. Although the text "with all of the words" appears to be one unit in the rendered moddl, it is
actually made up of three text nodes in the DOM. Because a user may use "with all words' asa

61

keyword pattern for the first textfield, it isimportant for the a gorithm to compare the pattern to
the concatenation of these three nodes rather than to each one individually.

Figure 7.1 Rendered model of web page with multiple textfields (www.google.com/advanced _search)

all

Figure 7.2 DOM of the web page shown in Figure 7.2 (www.google.com/advanced _search)

To determine which text nodes constitute a blob, a preorder traversal is done over the DOM tree.
Every time a partitioning element is reached, a new blob is created and every text node under
that element is added to the blob. If the partitioning element has a partitioning element as a child,
then text nodes that appear under its child belong to its child's text blob, not its own.

Once all the blobs have been found, the text of the nodes within the blob is concatenated into a
string (again, by a preorder traversal of the nodes in the blob) and an entry pairing the string with
its partitioning element is added to a map. For the DOM in Figure 7.2, this map would contain
the following four entries:

62

Blob content Partitioning element
"with all of the words" first TD under first TR
"with the exact phrase” first TD under second TR
"with at least one of the words' first TD under third TR
"without the words" first TD under fourth TR

Figure 7.3 Map of text blob content to the partitioning element that contains it

Certain partitioning elements, such as SCRI PT and STYLE, must be treated as specia cases
because the text nodes that they contain are not visible in the web page, so those text nodes
should not be considered when doing keyword matches, and therefore do not become part of a
blob.

7.2 Determining Candidate Text Blobs

Once the mapping from blobs to partitioning elements has been built, an E-scoreis calculated for
each blob. An E-score (for edit distance score) is anumber from O to 1 that reflects how strongly
the blob contains the keyword pattern. If the E-score exceeds a certain threshold, then the blob is
added to alist of candidate blobs.

When the pattern is a substring of the blob, then the minimum value of the E-score is 0.95. If the
pattern and the blob must are the same string (when normalized), then the E-scoreisits
maximum value, 1.0. Thisis because exact matches should be ranked higher than substring
matches. For example, if aweb page hasonelink labeled "MIT" and another labeled "MIT
Libraries," then the keyword pattern should identify the first link instead of considering the two
links equally. If it did not, and the algorithm returned ambiguous match, then this would
inconsistent with user expectations because identifying an element by its exact name should be
unambiguous.

Keyword patterns that are not substring matches should not be disregarded altogether. Users may
omit or transpose words in their keyword patterns, such as using "al words" as a keyword
pattern to match the first blob in Figure 7.1. However, not al non-substring matches should be
ranked equally: patterns that do a better job of matching a blob should have higher E-scores.

To calculate an E-score for ablob B, | augment a conventional edit distance algorithm [29] as
follows. First, both the blob and the pattern are normalized by eliminating capitalization and
punctuation, and by replacing a sequence of whitespace characters with one space. Then the blob
is searched for an approximate occurrence of the pattern P, using the edit distance algorithm to
tolerate typos and omitted words. If the edit distance D is zero, that is, if the pattern is a substring
of the blob, then the value of the E-scoreis:

0.95+0.05* (|P|/ |B)),
but if D is nonzero, then the value of the E-scoreis:
0.95-(D/|P)).

When D is nonzero, that means that the pattern requires D insertions or deletionsto be a
substring of B. If the entire pattern would have to be edited to match B, then D is the length of

63

the pattern, in which case the E-score is 0, indicating that B does not match the pattern, as
desired. But when D isless than the length of the pattern, then it is scaled so that blobs that
require fewer edits have larger E-scores than those that require more edits. Note that an E-score
for D equal to zero will always be higher than an E-score for anonzero D. This scheme favors
substring matches, as desired.

7.3 Determining Candidate Matches

Oncethelist of candidate blobsis constructed, the next step is to find components that are likely
to be associated with the blob. This is done by taking the bounding box in the rendered web page
(b-box) of the root node for each blob and comparing it to the b-box of each component of the
type for which amatch is sought. For example, when keyword pattern matching is used in the
context of the ent er command, only the bounding boxes of textfields are considered.

When the b-box of the blob is to the left of the b-box of the component and the top and bottom of
the blob b-box are within the top and bottom of the component b-box (plus some small
threshold), then the blob b-box is considered a left match for the component. A right matchis
determined in asimilar manner.

If the top of the b-box of the component is within some threshold distance (which is currently 1.5
times the height of the component b-box) from the bottom of the blob b-box and the left edge of
either b-box is contained within the width of the other component, then the blob b-box is
considered a above match for the component.

Examples of these different types of matches are shown in Figure 7.4,

Figure 7.4 Comparing text blobs with textfields for matches. Bounding boxes of text blobs appear in gray and
textboxes appear in black. Some edges of the boxes are extended to show how the boxes line up.

7.4 Evaluating Candidate Matches

The context of keyword pattern matching determines the strength of a match. For example, when
using a keyword pattern to identify atextfield, aleft match is considered stronger than a right
match because text boxes are usually labeled to their |eft. For a checkbox, however, aright
match is considered stronger than a left match because checkboxes are usually labeled to their
right. To accommodate the differences between contexts, each blob-component pair is given a
strength index as afunction of the following heuristics within each context:

Type. As described above, the type of match that is considered more likely is determined by the

context of keyword pattern that is trying to be matched. These differences are summarized in
Table 7-1.

65

Type being matched Special conditions

Textfields, textareas, lists, and | The raw strength index of aright match is scaled down by 60%.
drop-down boxes

Checkboxes and radio buttons | The raw strength index of atop match or aleft match is scaled

down by 60%.

Hyperlinks If the text blob's element is not a descendant of the link, then its
strength index is 0.

Push buttons If the text blob's element is not athe button itself, then its

strength index is 0.

Table 7-1 Special conditions for each type of component matched by this algorithm.

E-score. A higher E-score always contributes positively to the strength index; however, the
degree to which it contributes is determined by the context.

Pixel Distance. The distance in pixels between atext blob and its component is most helpful in
deciding which component is the best match for a blob when a blob has multiple matches of the
same type (e.g., right, left, above) by taking a"nearest neighbors' approach. Indeed, many pages
have textfields justified to the right of a page with their labels justified to the | eft, so this creates
alarge distance between the label and the textfield that should not reduce the strength of their
association. However, consider a page that has a two-column web form:

Name: Address:

Figure 7.5 Labels that are candidate matches for multiple textfields

In this case, the keyword pattern " name" would be aleft match for both textfields becauseit lies
to the left of each of them. Because the pixel distance between Name and the left box is less than
the distance between Name and the right box, the match between Name and the | eft box should
have a higher strength index. Thisis also an example of why textfields favor right matches —if it
favored left and right matches evenly, then the field associated with Address would be
ambiguous.

Path Length. Thelength of the path in the DOM tree from the blob element to the component
element is called its path length. Blobs and components that are siblings have stronger
associations than those that are not. For example, in Figure 7.2, the path length between atext
blob and the | NPUT it is supposed to label is 3, but its path length to any other | NPUT iS 5.

Using path length can help eliminate fal se positives that occur when text in one section of a page
coincidentally lines up with a component in another section. Web portals and pages with sidebars
are prone to this type of error, as shown in Figure 7.6. In the Figure, the text "Search" appears at
least twice in the page. The first instance lines up with the main Y ahoo! search box, and the
second instance lines up with the Weather search box. Using the pixel distance between the blob
and the textfield to determine the better match is error-prone when the pattern happens to appear
at the edge of its block. Although Search t he Wb isbe closer than Sear ch Li stings inthis
example, thisis acoincidence and is not areliable heuristic.

66

Sections of a page often map to subtreesin the DOM. Because this type of mismatch error is
caused by matching across sections of a page, path length is a good heuristic to combat this
problem because it will rank pairs of nodes that are closely related in the DOM higher than those
with amore distant relationship.

Figure 7.6 Screenshot of the Yahoo! home page with amiguous textfield match for "Search" (yahoo.com)

The result of calculating the strength indices from these heuristicsis alist of (component,
strength) pairs ranked by strength. The algorithm returns the component of the top pair, unless
the top two pairs have the same strength, in which case it returns ambiguous match. If thelist of
pairsis empty, then it returns no match. Some contexts will only use a subset of these heuristics
to calculate the strength of apair, and then will only use the remaining heuristics in the event of
an ambiguous match.

7.5 Evaluation

| evaluated this agorithm on the 240 names (40 for each of 6 pages) generated by Part 3 of the
study. Its performanceis shown in Figure 7.7, and the screenshots, along with some of the
responses that users provided, appear in Figures 7.8-7.13. For each name, Chickenfoot either
found the right textbox (Match), reported an ambiguous match (Ambiguous), or returned the
wrong textbox (Mismatch). Precision is high for 5 of the 6 pages. Performance is poor on the
MIT page (shown in Figure 7.11) because it involved an ambiguous caption, and my heuristic
algorithm does not yet recognize the disambiguation strategies used for this caption (counting
and section headings). Also the 100% success rate on Vivisimo (shown in Figure 7.12) may be
misleading because that page only had one textfield; however, my algorithm disregards labels

67

that it believes are unrelated, even if there is only one textfield on the page, so the result is not
insignificant.

This evaluation is only preliminary; a proper evaluation should use alarger selection of web
sites. Nevertheless, it suggests that keyword patterns can be automatically resolved with high

precision.
100% -
90% -
80% -
70% -
60% - @ Mismatch
50% - O Ambiguous
40% - W Match
30% -
20% -
10% -
0% - ; ;

Yahoo Expedia Amazon MIT Vivisimo Google

Figure 7.7 Results of algorithm for resolving keyword patterns on Part 3 survey data

68

Figure 7.8 Yahoo! home page (www.yahoo.com) shown in Part 3 of the user study. Users' names for the
search box included: "Search," "Search the Web," "First Search," and "Seach [sic] the Web Text Box."

69

Figure 7.9 Expedia home page (www.expedia.com) shown in Part 3 of the user study. Users' names for the
return date field included: "return,” "return date," "trip return,” and "Return mm/dd/yy."

70

Figure 7.10 Amazon home page (www.amazon.com) shown in Part 3 of the user study. Users' names for the
search box included: "Search Amazon," "ProductSearch," "Searchl," and "search 2."

71

Figure 7.11 MIT emergency contact information page shown in Part 3 of the user study. Users' names for the
search box included: "MI2," "Notify Mi Two," "Emergency2Mi," "backup contact mi," "Mi," "above person not
available Mi," "Name MI," and "Contact 2 Mi."

72

Figure 7.12 Vivisimo home page (www.vivisimo.com) shown in Part 3 of the user study. Users' names for the
search box included: "search," "web search," "Cluster," and "vivisimo search."

Figure 7.13 Google advancd search page (www.google.com/advanced_search) shown in Part 3 of the user
study. Users' names for the domain box included: "site," "Domain," "only from," "Advanced Search Domain,"
"domain/site," "GOOGLE," and "return results from the site or domain."

73

74

75

Chapter 8 Implementation

In this chapter, | explain how Chickenfoot isimplemented. | begin by describing Chickenfoot's
internal representation of aweb page, asthisisthe fundamenta data structure that the rest of the
system is built upon. Then | explain how Chickenfoot commands and objects operate on this
model of the page. Subsequently, | show how this model is maintained in response to changesin
the underlying page. Next, | reveal how Chickenfoot scripts are interpreted so that its functions
can be called using a standard JavaScript interpreter. Finaly, | explain how pageloading is
monitored so that the go command and URL triggers work as desired.

8.1 Chickenfoot Model for a Web Page

Chickenfoot has two copies of the DOM of aweb page, one in Javaand one in C++. This section
explains the motivation for these two copies, and how the JavaDOM is created from the C++
DOM.

8.1.1 Motivation

Chickenfoot leverages the LAPIS pattern library to match web page elements against text
constraint patterns. Because LAPIS is alarge codebase written in Java, and Firefox isan even
larger codebase written in C++ and JavaScript, it isimpractical to translate either codebase into
the other’ s language, so a Firefox-LAPIS bridge is employed so that Chickenfoot can use LAPIS.

Fortunately, Firefox isbundled with a bridge called LiveConnect [18] that enables JavaScript to
communicate with Java objects. Because Chickenfoot is written mostly in JavaScript,
LiveConnect makesit fairly easy to call into LAPIS; however, the cost of calling Javafrom
JavaScript isrelatively expensive (see the benchmarking datain Table 8-1). To compensate,
Chickenfoot is designed so that it makes afew calls to Javawith large inputs rather than many
callswith small inputs.

Java calling Javawithin its own Java Virtua Machine 0.03 ug/call
JavaScript calling JavaScript within Firefox 15-20.00 ug/call
JavaScript calling Java via LiveConnect in Firefox 950-1000.00 ug/call

Table 8-1 Benchmarking data for overhead of method calls in different languages. These benchmarks were
made on a 1.7GHz laptop running WinXP, Firefox 1.0, and Java 1.5.

76

Firefox's LiveConnect technology was a mgjor factor when deciding which web browser to use
for Chickenfoot. Microsoft Internet Explorer (1E) isafar more popular browser than Firefox, so
Chickenfoot may have wider appeal if it were embedded in IE; however, it was difficult to write
aBrowser Helper Object for |E that could make calls to Java code. Also, Firefox has better
support for Web standards, such as DOM 2 [2], that are used heavily in the Chickenfoot code
base. Finally, Firefox is available on Windows, Mac OSX, and Linux, whereas IE isonly
available on Windows (and to some extent, on Mac OSX).

8.1.2 Building a Bridge between Firefox and LAPIS

For Chickenfoot to use LAPIS to find pattern matchesin aDOM, it must create a mapping
between the DOM in Firefox and the string model in LAPIS. This section explains the
construction of this mapping, and a flow chart of how the mapping is created appears at the end
of the sectionin Figure 8.3.

When Firefox |oads aweb page, it parses the page’s HTML and automatically creates a DOM
representation of it. Once this DOM representation has been created, the HTML source that was
used to create it isdiscarded in lieu of the DOM because the well-formed, structured tree
representation is more convenient for Firefox to work with than araw string of HTML.

In order to be sure that LAPIS is matching against the same HTML that Firefox sees,
Chickenfoot creates a string of well-formed XHTML from the Firefox DOM, and sendsit via
LiveConnect so LAPIS can create an equivalent HTML document. As Chickenfoot does a
preorder traversal to create this string of XHTML, it assigns each node an id number, starting at
zero, and places each node in an array at the index that correspondsto thisid. Because theid
number is set as a property of the node, it is possible to get the id of anode in constant time.
Similarly, because the array isindexed by node id, looking up anode by itsid is also a constant
time operation. The process of creating the XHTML from the HTML isillustrated in Figure 8.1.

77

<HTM_>hi <BR\ >wor | d<P>bye</ HTM.>

(1) Sloppy HTML received from server. <BR\ > has an erroneous slash and HEAD and BODY are missing.

(2) DOM created by Firefox HTML parser. Note that the parser adds missing HEAD and BODY nodes.

Q Q “hi,]
N AL A 4 N ’ 4
) .

0 1 3 4 5 6 7

(3) DOM nodes arranged in an array after a preorder traversal. A node'sindex in array servesasitsid.

<HTM.><HEAD></ HEAD><BODY>hi
</ BR>wor | d<P>si gh</ P></ BODY></ HTM.>

(4) XHTML produced by the traversal. This XHTML is sent to Java via LiveConnect.
Figure 8.1 Creating the XHTML in Firefox

Because the XHTML produced by the traversal is guaranteed to be well-formed, LAPIS can use
its XML parser to recreate the DOM in Javafrom the XHTML string. In Java, Chickenfoot uses
the Xerces XML parser to parse the XHTML, but then it wraps each node in the Xerces DOM
with aclass called Annot at edNode, and stores the tree of Annot at edNodes in aclass called

Mozi | | aDocunent Par seTr ee. By wrapping a Xerces DOM node, an Annot at edNode can store
additional information about the node, such as the index of the node in a preorder traversal of the
tree — thiswill be important later when mapping from aMzi | | aDocunent Par seTr ee to a
Firefox DOM.

78

Oncethe Mbzi | | aDocunent Par seTr ee has been created, it needs to be flattened into a string of
HTML because adocument in LAPIS must be created from a string. Because LAPIS will delimit
pattern matches by offsets into this string, a mapping between positions in the DOM and
character offsetsin the string is created as the DOM s flattened into HTML so that LAPIS
pattern matches can be mapped back into positionsin the DOM when necessary. The process of
converting the XHTML to HTML in Javais shown in Figure 8.2.

<HTM.><HEAD></ HEAD><BODY>hi
</ BR>wor | d<P>si gh</ P></ BODY></ HTM.>

(1) XHTML received from Firefox to be parsed by Xerces.

(2) Mozi | | aDocurrent Par seTr ee that wrapsthe DOM created by the Xerces XML parser.

<HTM_L><HEAD></ HEAD><BODY>hi
wor | d<P>si gh</ P></ BODY></ HTM_.>

(3) HTML produced by traversing the Mozi | | aDocunent Par seTr ee. ThisHTML issent to LAPIS.

Figure 8.2 Recreating the DOM and generating the HTML in Java

Unfortunately, a LAPIS document cannot be created directly from the XHTML rather than the
HTML because an XHTML document is not necessarily avalid HTML document. For example,
the XHTML in Figure 8.2 has an opening and closing tag for
, but according to the HTML
4.01 specification, closing tags are forbidden on <BrR> aswell as some other elements. Because
closing tags are required on al elementsin XHTML [30] the XHTML must be converted to
HTML before being passed to LAPIS.

Another alternative would be for Chickenfoot to create avalid HTML string from the DOM in

JavaScript rather than an XHTML string; however, this would take the XML parser out of the
loop on the Java side, and so no Java DOM would be created. Without a Java DOM, it would be

79

difficult to map from LAPIS coordinates to positions in the Firefox DOM, so the additional
mapping from XHTML to HTML must remain part of the system.

It would seem that much of this complexity could be avoided if Chickenfoot simply sent LAPIS
the URL of the page that is currently being displayed in Firefox (which would surely be less
expensive to send over the JavaScript-Java boundary) and had LAPIS fetch the page and parse it
itself. Unfortunately, because LAPIS does not have the same cookies, authentication, etc. that
Firefox has, LAPIS might not get the same HTML as Firefox when it tries to access the same
URL, so thisintricate mapping must be created between Firefox and LAPIS to ensure that the
two representations of the page are consistent.

$ % &
A

*

* I #
-l % | # - o
) 4 ., , %
¢ %- # T
% ‘ — % %, %
4 4 s B 4 01 # &

Figure 8.3 Construction of Mapping between Firefox and LAPIS

8.2 How Chickenfoot Operates on this Model

As described in Chapter 3, Chickenscratch provides commands that let the user talk about
objectsin aweb pagein terms of the rendered model. This section explains how objectsin this
high-level model are translated to those in the lower-level DOM.

8.2.1 How the find() Command Works

Thefi nd command needsto be able to take atext constraint pattern and create alist of Mat ch
objects that correspond to the matches that LAPIS finds in the document's string model. To do
this, thefirst step isto run LAPIS on the HTML that was generated from the DOM in the
previous section. The matches found by LAPIS are represented as a RegionSet, which is a set of
Region objects where each Region is a substring of the HTML that contains the content of the

80

pattern match. Each Region is represented by the start and end indices of the substring in the
HTML.

The next step isto map each Region into an equivalent section of the DOM called a Range. As
described by the W3C specification, a DOM Range "identifies arange of content in a Document.
..Itiscontiguous in the sense that it can be characterized as selecting all of the content between a
pair of boundary-points.” [31] As shown in Figure 8.4, each boundary-point is defined by a node
and an offset, so two nodes and two offsets (which are nonnegative integers) completely
determine a Range. For a boundary-point whose node is atext node, its offset is a O-based index
into the node's text string. For all other boundary-points, its offset is the node's position among
itssiblings.

Figure 8.4 lllustration of a Range [32]

Therefore, to convert a Region to a Range, the start and end indices of the Region need to be
converted into boundary-points. Thisis done by finding the most specific node that contains the
index. Consider the HTML created from the DOM in the previous section:

<HTM_L><HEAD></ HEAD><BODY>hi
wor | d<P>si gh</ P></ BODY></ HTM_.>

The Regions that correspond to the nodes in the DOM are as follows:

81

Id | Node Val ue Regi on
0 <HTM.> [0, 61]
1 <HEAD> [6, 19)
2 <BODY> [19, 54]
3 “hi" [25, 27)
4
 [27, 31]
5 “wor | d" [31, 36]
6 <p> [36, 47]
7 "si gh" [39, 43]

Table 8-2 Regions for DOM nodes

To find the boundary point for index 41, consider each node and seeif 41 iswithin its Region. It
turns out that the Regions for nodes 0, 2, 6, and 7 all contain index 41; however, node 7 has the
smallest Region containing 41, so it will be the node for 41's boundary-point. Because Regions
for nodes are strictly nested, there must always be a smallest Region that contains an index.

I d | Node Regi on 0
Val ue Q
0 |<htm > [0, 61]
1 |<head> [6, 19]
2 | <body> [19, 54] 1 2
3 ["hi" [25, 27] ‘
4 |
 [27, 31] <
5 |"world" [31, 36] 3. 5 6
6 <p> [36, 47] “hi”
7 |"sigh" [39, 43]

Figure 8.5 Finding the node for the boundary-point for index 41

Since the start index for node 7 is 39, then the offset of 41 within node 7 is (41 — 39) or 2, so the
offset for 41's boundary-point is 2.

When each node knows the indices of the Region that coversit, an index can be converted into a
boundary point in O(b log, N) time where N is the number of nodes and b is the branching factor
of the DOM tree. Asthe start and end indices are included in each Annot at edNode asthe

Mozi | | aDocunent Par seTr ee is built, converting indices to boundary-points does indeed run in
O(b logy N) time.

Things become slightly trickier when a coordinate coincides with the beginning or end of a node.
For example, index 43 (the < in </ P>) could be considered the boundary point at node 7 with
offset 4, or the boundary point at node 6 with offset 1. Chickenfoot prefers mapping Regions to
elements rather than substrings, so the Region [39, 43] would be mapped to the boundary-point
at node 6 with offsets 0 and 1 rather than the boundary-point at node 7 with offsets 0 and 4.

82

Elements are preferred to substrings because moving nodes in the DOM is simpler than moving
text, as shown in section 8.3.1.

Because the Firefox DOM and the Java DOM are identical trees, the index of anodein a
preorder traversal in one tree can identify the corresponding node in the other. Thus, a Range can
be sent across the JavaScript-Java boundary as two pairs of integers where each pair represents a
boundary-point such that the first integer is the index of the node and the second integer is the
offset. For example, the Range covering the children of <BoDY> could be expressed as
((2,0),(2,4)).This establishes a consistent mapping between LAPIS Regions and DOM Ranges.

Oncef i nd has a Range that corresponds to each match found by LAPIS, the final step isto
create avat ch object for each Range. The fields of a new Mat ch object are a populated by a
Range by therulesin Table 8-3.

next areference to the empty Mat ch
hasMat ch | true

count 1

i ndex 0

range areference to the Range

cont ent a DocumentFragment cloned from the Range

el ement | if the Range delimits asingle Element node, then el enment isnon-null
reference to that Element; otherwise, it isnull

docunent | the HTMLDocument that r ange belongs to

ht m the HTML produced by a preorder traversal of the Range

t ext range.toString()

Table 8-3 Rules for creating a Match from a Range

Asfind converts each Rangeto aMat ch, it builds up alinked list of Mat ches and returns a
reference to the first Mat ch in the sequence.

The implementation of f i nd is outlined in aflow chart in Figure 8.6.

83

. ‘ o
3 4

5 6 7

ssigh

EEE

-

©)

\ |
1 . | 4
(1 C (5)
7 Parser
(C++/)
2 (4)
(O ‘ -
-point
LAPIS Mozilla (node-ic offset)

Parse
Tree

Figure 8.6 Implementation of find

8.2.2 How the insert() and remove() Commands Work

i nsert andr enove work by translating their arguments into nodes and then using standard
methods for adding and removing nodes to mutate the DOM. Recall that the definitions of the
functions are as follows:

i nsert (Position position, Chunk chunk) // returns a Chunk
renove(Pattern pattern) /1 returns a Position

i nsert convertsaPosi ti on into acollapsed Range, which is a Range whose start and end
boundary-points are the same. It then converts a Chunk into anode, and usesthei nsert Node
method of the Range to insert the node into the DOM.

Because aPosi ti onisaPattern, converting aPosi t i on into a Range can be broken into cases.

Recall that aPat t er n is one of five types, two of which are strings, so the four cases are as
follows:

String. Use the string as an argument to f i nd to get a vat ch. This reduces the String
case to the M atch case.

Match. Returnitsr ange. Note that this may be null.

Node. Create a new Range whose start and end container is the node's parent node and
whose start and end offsets delimit the node.
Range. Already a Range.

If the Range produced by this conversion is null or is not a collapsed Range, theni nsert will
throw an error, as specified.

The process of converting a Chunk into a node may also be broken into cases:

String. Use the current document to create a Range and pass the string to the Range's

cr eat eCont ext ual Fragment () method which will produce a DocumentFragment which
is a subtype of node.

Match. If the Mat ch'sr ange is available, this reduces to the Range case. If r ange isnull,
then the Mat ch'sht M is used, and this reduces to the String case.

Node. Already a hode.

Range. Use the Range's cl oneCont ent s() method to get the Range asa
DocumentFragment, which is a subtype of node.

Link or Button. Already an element node.

renove iSimplemented by converting aPat t er n into a Range and then invoking the

del et eCont ent s() method of that Range. A side-effect of invoking del et eCont ent s() isthat
it collapses the Range, so once the Range has been collapsed, it isavalid Posi t i on that can be
returned by r enove. Asthe algorithm for converting aPat t er n into a Range is defined above,
implementing r enove istrivial.

8.3 Updates to the Model

Because Chickenfoot uses data structures that are built on top of the DOM and its derivative
Ranges, changes to either of these objects must trigger updates to Chickenfoot's data structures to
reflect the objects new state. How Chickenfoot is notified of these changes and how it deals with
them is explained in this section.

8.3.1 Updates to the DOM

There are three types of changes that can be made to the DOM: a node can be inserted, removed,
or mutated. Fortunately, the DOM allows clients to add themselves as listeners for each of these
events, which Chickenfoot does.

When a node is added to the DOM, the node and its descendants are traversed to create a string
of XHTML in the same way an HTML document is flattened. During the traversal, the nodes are
assigned ids (starting with the last available id for the DOM) and are added to the id-indexed
array of nodes for the document. Once thisis complete, the XHTML is sent over the JavaScript-
Java boundary, along with theid of the parent of the node that was inserted and the node's index
within its siblings. Thisinformation is sufficient to update the Java DOM.

In Java, the XHTML is parsed as before, and it also numbers these new nodes starting with the
last availableid. It looks up the parent node by id number, and inserts the subtree that it has
created from the XHTML at the specified index among its children. This ensures that the Java
DOM isstill identical to the Firefox DOM, and that the id numbers used in both DOMs are
consistent.

85

When a node is removed from the DOM, only the id of the node that was removed needs to be
sent to Java. When the Java DOM receivesthisid, it smply removesit from its DOM, as well.

There are two types of node mutations that can occur in the DOM: changing the text of atext
node and changing the attribute of an element. To notify the Java DOM of achangeto atext
node, only theid of the node and the new text of the node need to be sent. The message for an
attribute update is also simple, requiring the id of the node whose attribute was changed, and two
strings, one for the key and one for the value of the attribute. These updates are simple to
perform on the Java DOM.

After any of these three mutations to the Java DOM, Chickenfoot must also regenerate the
HTML from the DOM so that it can create a new document in LAPIS. Fortunately, LAPIS hasa
mechanism for creating mappings from old versions of documents to new ones, so thisis used so
that matchesin the old DOM can be transated to matches in the updated DOM.

8.3.2 Updates to Ranges

A Range over aDOM might not contain the same content after the DOM has been mutated.
Although the DOM 2 Range Specification defines a policy for Range modification under DOM
mutation, Chickenfoot adds two improvements to the standard policy. Asshown in Table 3-1, a
Mat ch can be completely determined by itsr ange, So enusring that Ranges match the same
content after mutations to the DOM is sufficient for ensuring that Mat ches match the same
content, as well.

The DOM 2 Range specification states the following:

2.12 Range modification under document mutation

There are two general principles which apply to Ranges under document
mutation: Thefirst isthat all Rangesin a document will remain valid after any
mutation operation and the second is that, as much as possible, all Ranges will
select the same portion of the document after any mutation operation.

It then goes on to define the following policy for updating Ranges under insertions:

2.12.1 Insertions

An insertion occurs at a single point, the insertion point, in the document. For any
Range in the document tree, consider each boundary-point. The only casein
which the boundary-point will be changed after the insertion is when the
boundary-point and the insertion point have the same container and the offset of
the insertion point is strictly less than the offset of the Range's boundary-point. In
that case the offset of the Range's boundary-point will beincreased so that it is
between the same nodes or characters asit was before the insertion.

The above policy for insertion is not as good as it should be in terms of maintaining the second
general principle listed in 2.12. For example, consider the following HTML.:

<P><| >t hi ng1</ | ><I >t hi ng2</ | ></ P>

86

and Ranges R1 and R2 that match the <I > elements:

R1=[(<P>,0), (<P>,1)], soR1 correspondsto <I >t hi ngl</ 1>
R2=[(<P>, 1), (<P>, 2)], s0 R2 corresponds to <I >t hi ng2</ | >

away
L
\J\J

Figure 8.7 DOM with Range content outlined with ovals

Consider what happens when bol d</ b> isinserted before <i >t hi ng2</ i >. Because “the
only case in which the boundary-point will be changed after the insertion is when the boundary-
point and the insertion point have the same container and the offset of the insertion point is
strictly less than the offset of the Range’ s boundary-point,” the only boundary point that gets
changed is the endpoint of R2. Therefore, after the insertion:

R1=[(<p>,0), (<p>,1)], soR1 correspondsto <i >t hi ngl</i >
R2=[(<p>, 1), (<p>, 3)], S0 R2 corresponds to bol d1</ b><i >t hi ng2</ i >

Figure 8.8 DOM with Range content outlined with ovals after insertion

87

Clearly, R2 does not select the same portion of the document after the mutation operation. This
would be aproblem for aMat ch that had R2 as its Range becauseitst oSt ri ng() method would
return a different value after the new node was inserted even though the new node should have
no effect on the Mvat ch. If the Range update policy were such that R2 would be [(<p>, 2) , (<p>,
3)] after the mutation, then the Mat ch would be consistent. Therefore, Chickenfoot uses the
following policy to update Ranges, in addition to the DOM 2 policy:

For any Range in the document tree, consider each boundary-point. The boundary-point will
also be changed after the insertion when the boundary-point is a startpoint of a Range, the
startContainer is not a text node, and the insertion point is equal to the boundary-point. In
that case the offset of the Range's boundary-point will be increased so that it is at the start of
the same node as it was before the insertion.

But what about the case where the container of the boundary-point liesinside atext node? In this
case, the update is more complicated because it involves creating new nodes. Consider the
following HTML:

<body>My cat’'s breath snmells like cat food. </ body>
and Ranges R1 and R2 that match the string cat :

R1=[(#extl, 3), (#textl, 6)], so R1 corresponds to the first appearance of cat
R2 =[(#textl, 28) , (#textl, 31)], so R2 corresponds to the second appearance of cat

R1 R2

O O

Figure 8.9 DOM with Range content outlined with ovals

Doing an insert of a new text node containing the string nonst er at [(#textl, 6)] produces the
following:

R1=[(#extl, 3), (#extl, 6)], so R1 corresponds to the first appearance of cat
R2 = (#textl, 6) , (#extl, 6)], so R2 corresponds to a point between #text1 and #text2

88

R1R2

Figure 8.10 with Range content outlined with ovals after insertion

Now there are three text nodes that are consecutive children of <body>:

#textlisMy cat
#text2 isnonst er
#ext3is’'s breath smells like cat food.

Note that #text1 has not been replaced with anew node with different text. Instead, the value of
#text1 has been changed to the new text. Whether #text1 should be mutated or replaced is not
specified by the DOM specification; however, Firefox implements the specification by mutating
the first node.

In this case, we want R2 to point to anode that did not exist before the insertion was made. Note
that in this case, R2 satisfies the original requirements for changing its boundary point, in that the
offset of the insertion point is strictly less than the startpoint for R2; however, the update for R2
still failsto change R2 in such away that it till selects the same portion of the document. Again,
since the original selection for R2 isnow at [(#text3, 22), (#text3, 25)], this suggests that the
rules for updating Ranges after mutation can be improved upon even further to accommodate
nodes that are created as aresult of insert(). To this end, Chickenfoot uses the following policy
for updating Range boundary-points upon insertion, in addition to the DOM 2 policy:

If an insertion point lieswithin a text node, consider all Rangesin the document tree that have
a boundary-point whose container is equal to the text node. If the boundary-point is before or
equal to theinsertion point, then both the container for the start or end (depending on the type
of boundary point) will be changed to the new text node that was created, and the offset will be
changed to (oldOffset — oldNode.nodeValue.length).

To implement these policies, Chickenfoot needs to know about every Range that has been
created in the DOM, and to update each one whenever a node is removed or inserted. Section
8.3.1 aready explained how these mutation events can be captured, but getting areference to al
of the Rangesis still aproblem.

Because the only way to create a Range in the DOM isto call itscr eat eRange method,
Chickenfoot replaces this method with one that delegates to the original method to create the

89

Range, but then keeps areference to it before it is returned to the client. This collection of
references is stored so that a Range can be looked up in constant time when the node for either of
its boundary-points is mutated. When a mutation occurs, potentially affected Ranges are
inspected, and the Chickenfoot policies for Range modification under document mutation are
applied, if necessary.

8.4 How Chickenfoot Scripts are Interpreted

Firefox renders the DOM to produce the graphical view of the web page that the end user sees.
Any change to the underlying DOM isreflected immediately in the rendered view of the web
page, so Chickenfoot scripts effectively work by manipulating the DOM.

In Firefox (and in most browsers), users can manipulate the DOM in JavaScript through an
object named docurrent . Chickenfoot builds upon this DOM access by creating an extended
JavaScript environment called an evaluation context in which Chickenfoot scripts are evaluated.
In this way, a Chickenfoot script can have access to all of the objects and functions that a
JavaScript programmer is accustomed to having, in addition to the higher-level objects and
functions that Chickenfoot provides. Thisis accomplished by taking the text of a Chickenfoot
script as astring and evaluating it inside of the evaluation context by using thewi t h and eval
functions in JavaScript:

/1 the variable, script, passed to this function
/1 is the source code of the user's script as a string
function interpret(script) {

/1 This is the evaluation context for the script.
/1 Fam liar objects, such as docunent, are defined here,
// in addition to Chickenfoot commands,
/1 such as find() and click().
eval uati onCont ext = {
docunent getter : function() { return getDoc(); },
find . function(pattern) { ... },
click . function(pattern) { ... },

.

/1 this evaluates the script in the eval uati on context
wi th (eval uati onContext) {
eval (script);

}
}

Though the use of wi t h in JavaScript is frowned upon because it is often misused [33], it is used
appropriately in Chickenfoot. Misuse occurs when the client triesto assign avalue to a non-
existent field to the object added to the scope chain by wi t h:

var x ={ a: 2}

with (x) {
this.a = 3
this.b =4 // bis not defined in x, so this has no effect

90

}

alert(x.a + x.b) // displays NaN because x.b is undefined

In the code above, x. a is changed from 2 to 3, but b isnot added as afield of x, as the user might
expect. Because b was not defined in x before the wi t h statement, its assignment inside the wi t h
statement has no effect. In Chickenfoot, thisis not a concern because the wi t h statement is not
used to assign values to eval uat i onCont ent ; instead, it is used to run user codein an
environment where Chickenscratch commands are in scope, which it does as desired.

8.5 Monitoring Page Loads

It isimportant to keep track of when web pages are loading in Firefox so that Chickenfoot does
not try to operate on partially-loaded pages. This section explains how page |oads are monitored,
and how Chickenfoot uses this information to suspend an operation until a page has finished
loading.

8.5.1 Listening for Load Events

Firefox provides a ProgressListener interface that is notified upon updates to the progress bar:
this includes the beginning and end of a page load, including some intermediary updates about
what percentage of the page has been downloaded thus far. There is also a LoadListener interface
that is notified when a page is completely loaded into the browser. Unfortunately, the
ProgressListener reaching 100% does not precisely coincide with aload event because Firefox
takes some additional time to finish processing the HTML after it has received all of the bytes
from the server.

A web page in Firefox is displayed inside atab, and Chickenfoot keeps track of the loading state
of each tab in the browser. First, it registers with Firefox as ProgressListener and a LoadL istener.
When it receives a STATE_START event from the ProgressListener, it checks the event to see
which tab triggered it, and marks that tab as loading. When it receives a LOAD event from the
LoadListener, it also checks the event to see which tab triggered it, and marks that tab as loaded.

8.5.2 Waiting Until a Load is Complete

In the current implementation of Chickenfoot, all accessesto aweb page go through the
docunent object. In the evaluation context described in section 8.4, docunent isareferenceto a
function that returns an object that wraps the DOM rather than returning a reference to the DOM
itself. By making docunent afunction, Chickenfoot can suspend itself until the DOM has
finished loading. Thisis completely abstracted from the user.

When docurent iscalled, it asks the browser which tab is currently in focus. Once it finds that
tab, it asksit which stateitisin. If itisin the loaded state, then it returns the tab's DOM
immediately. Otherwise, the tab isin the loading state, so thetab is polled in 100msintervals
until it isloaded, at which point the DOM is returned.

Using this approach, a Chickenfoot script can fire commands that start |oading pages, and the
script can continue executing in parallel with the loads until it reaches a point where it tries to

91

access a page that isin the middle of loading. When that happens, the script will suspend
execution until the load is complete, and will resume when the page isloaded. This allows end-
users to write scripts without having to worry about this synchronization.

8.5.3 Using Page Loads for URL Triggers

Because Chickenfoot is receiving LOAD events, it uses these events to fire URL triggers. Upon
receiving a LOAD event, Chickenfoot |ooks through the list of URL triggers that the user has
defined. For each one, it tries to match the URL of the page that has been |oaded against the
trigger's URL pattern. If the loaded page matches the regexp for the URL pattern, then it runs the
script associated with the trigger.

92

93

Chapter 9 Conclusion

Chickenfoot is aweb automation toolkit designed to make it easy for end-usersto develop scripts
to change their web experience: its command language abstracts the underlying representation of
aweb page so that users can operate on it at high level, its devel opment environment is
conducive to experimentation so scripts can be prototyped quickly, and its trigger system makes
it possible to seamlessly integrate user customizations into everyday browsing.

9.1 Contributions

In thisthesis, | have introduced a system, Chickenfoot, that empowers end-user programmers to
automate and customize web pages without viewing their HTML source. | have done this by
integrating programming and pattern languages that are focused on describing commands and
objects relevant to interactions with web pages.

As part of Chickenfoot's language, Chickenscratch, | have introduced keyword patterns, which
are patterns that use the spatial location of keywords in aweb page to identify page elements.
The web survey datathat | provide supports the usability of this technique. | have also presented
an algorithm for resolving keyword patterns, and have demonstrated its success on a modest
amount of training data.

By embedding Chickenfoot in the Firefox web browser, | have created a devel opment
environment that encourages experimentation and spontaneity in web scripting. My environment
provides tools that help the user create and debug Chickenscratch code. As a side-effect, | have
also created an application for devel oping JavaScript programs and extensions to Firefox.

| have introduced the rendered model of aweb page, which builds upon the Document Object
Model that most web browsers use. In creating this model, | offer improvements to the W3C
DOM specification for updating Ranges of a DOM under mutation.

Finally, by enabling usersto store scripts as triggers, | have given end-user programmers the
ability to automate and customize their web experience.

94

9.2 Future Work

Though the core of the Chickenfoot system has been implemented, there are still many
extensions to the system that we would like to implement.

9.2.1 Packaging Scripts

Package Chickenfoot script as a standalone Fir efox extension.

Currently, if auser wishes to run a Chickenfoot script that someone el se has created, then he
must get its source code, install Chickenfoot, and run the code. It would be much easier if the
script author could package his script as one file that a user could install and run without
downloading Chickenfoot. For Firefox, the logical thing to do isto package the Chickenfoot
script asits own Firefox extension. As a Firefox extension is bundled asasingle XPI file
(pronounced "zippy"), and can be installed by clicking on a hyperlink on aweb page, packaging
Chickenfoot scripts as XPls would make it ssmpler for script authors to deploy their creations to
USErsS.

A tool was recently created to package Greasemonkey scripts as a XPls,[34] so it should not be
difficult to create aanalogous tool for Chickenfoot. This packaging tool would take a script and a
trigger (which is effectively a URL pattern), and in turn create a Firefox extension that ran the
script whenever the user visited a page that matched the trigger pattern. The extension would
expose the trigger as a setting that could be overridden by the end-user.

Because packaging the script as an extension would not expose the code to the user, Chickenfoot
should also have the ability to read XPI files, so script authors could share code in thisway, as
well. Thiswould also make it easier to explore existing Firefox extensions that were created with
tools other than Chickenfoot.

Package Chickenfoot script so it can run asafunction on a mobile device.

It is difficult to browse the Web on mobile devices because of the small screen and the absence
of afull keyboard. Despite this, many users want to be able to browse the Web from their cell
phone so they can get driving directions and other information from the Web that is particularly
useful when they are away from their computers. Alex Faaborg, a student at the MIT Media Lab,
notes the following when discussing his own macro recorder for the Web:

| believe that one of the reasons Web browsing doesn't work well on mobile
devicesisthat users don't want to browse on mobile devices; they want to quickly
and easily retrieve a specific piece of information, or complete a specific action.
One of the benefits of [my] application isthat it reduces complex processes on the
Web to their minimum input and output. Users could record a process on the web,
and then copy that process onto their mobile device. . . The process of logging in
and retrieving thisinformation using afull sized computer display can be reduced
to asingleclick on acell phone. [35]

It should be possible to package Chickenfoot scripts in the same way, minimizing processes on

the Web to their minimum input and output, so that users can easily do the tasks that are most
important to them on their mobile device, even if general web browsing is difficult.

95

9.2.2 By Demonstration

Make actionslogged in the Actions pane on par with thoserecorded in WebVCR.

The user actions logged in the Actions pane are minimal: only page navigations are recorded in
the current implementation of Chickenfoot. Thisis unfortunate because a better logging system
would make it possible for users to demonstrate their activity in the browser and copy the content
of the Actions pane rather than trying to compose a script on their own and making errors. This
could help novice users learn the Chickenfoot language, as well.

By taking the approach used in WebV CR, listeners could be added to web forms when apageis
loaded so that all user input could be logged. For example, after a user does a search from the
Google home page, the content of the Actions pane would be:

go(' http://ww. googl e. com’ ")
enter('search terns')
click(' Google Search")

Duplicating the work of WebV CR to add the listeners is not difficult; however, translating the
actionsinto appropriate Chickenfoot code is a challenge. Currently, when a user writes a
Chickenfoot script, he provides a keyword pattern that Chickenfoot resolves to aweb
component. But to do the converse, that is, to take aweb component and create a keyword
pattern for it, isits own research problem. For example, consider the log of a user doing aweb
search on Y ahoo! instead of Google:

go(' http://ww. yahoo.com ")
enter(???, 'search terns') /1 what shoul d replace ???
click('Search the Web')

Determining how to name the textfield is an open question. " Sear ch t he Web" would
probably be the most intuitive name for the user, but " | mages™ aso matches the correct
textfield. Coming up with candidate keyword patterns for a component and choosing the best one
is an open problem for Chickenfoot.

Enable user to discover patterns by selecting content in a web page.

Some patterns are difficult or tedious for a user to define in Chickenfoot. For example, a
reasonabl e attempt at a LAPIS pattern for a Google search result is: par agr aph j ust

bef or e host nane. But coming up with this pattern may require the user to do some
prolonged experimentation in the Patterns pane; and further, this pattern does not even reliably
match Google search results. Rather than go through the process of trial-and-error, it would be
guicker for a user to select an example of a Google search result in the page and have LAPIS
suggest patternsto the user. LAPIS aready supports pattern-suggestion in the standalone
version, so it is simply a matter of porting this functionality over to Chickenfoot.

Build a programming-by-demonstration (PBD) system on top of Chickenfoot.

As Chickenfoot istargeted at end-user programmers, it would be even easier for novice
programmersto learn if they did not have to write any code at al! This could be done by adding
functionality to Chickenfoot to make it behave like a macro recorder, such as WebVCR or

96

LiveAgent, where the user explicitly records the task they would like to automate. However, a
more interesting system would be one that could data mine the history of a user's web activity for
usage patterns, and then suggest and write scripts that would automate actions that the user
appeared to do often.

Automatic discovery of web services.

Web pages are subject to change in ways that break Chickenfoot scripts. On the other hand, web
services are stable APIs that are unlikely to change. Sites such as Amazon and Google provide
web services that allow users to make programmatic queries that are equivalent to the ones that
they do by filling out web forms on the same site.

It would be helpful if Chickenfoot could examine the history of queriesthat a user made to aweb
site, and their results, and then compare them to the results of doing the same queries through the
site'sweb services. If it found amatch, then it could create a Chickenfoot function that abstracted
the SOAP callsto the web service. Thiswould give the user reliable programmatic access to the
information that he wants.

Such a system could be implemented by using UDDI [36] to find out if a site provides web
services. Once it discovered the web services, it could use a brute-force approach, trying the
user's inputs on each service the site provides and comparing the web service output to the
content the user seesin aweb page when he does the same query. This approach may not be
efficient, but it suggests that a solution is possible.

9.2.3 User Interface

Provide a graphical view of a Chickenfoot script.

For commands that deal with automating web forms, it would be helpful for users to be able to
see the component that the command would affect. For example, displaying the button or
hyperlink that would be matched by the Pattern argument toacl i ck command would help
users predict the effects of running their script. Also, in the event that a web page changed so that
the Pattern now matched a different link or button, the user would be more likely to notice the
change before running the script because he would see that the image of the component had
changed.

Provide a Chickenfoot interpreter or multiple editors.

When users are devel oping a script in Chickenfoot, there is often a portion of the script that the
user has completed as well as a portion of the script that the user is experimenting with.
Unfortunately, thereis only one editor, so both portions of the script are in the same buffer and
the user is frequently commenting and uncommenting portions of the script. The user should be
able to have separate space for code that is working and code that is under development.

One approach is the one employed by StarLogo [37], which is a programming environment for
creating smulations that is aimed at middle school students. Its editor is split into atop and
bottom pane where the top paneis a StarL ogo interpreter and the bottom pane contains functions
that the user has created. This alows the user to experiment in the top pane and move completed
code into the bottom pane.

97

Another solution would be to have a tabbed pane of Chickenfoot editors instead of only one
editor. Thisway, the user could have more control over how he broke up his code. One drawback
of this design, however, is that the user would not be able to view code from more than one
editor simultaneoudly.

In either case, sufficient prototyping and user testing should be done to determine how the
interface could provide better support for script development.

Support Bookmark Triggers.

One of the major uses of Chickenfoot isto automate navigation, especialy to "hard to reach”
pages. As users use bookmarks to automatically take them to a page, they should be able to
access Chickenfoot scripts from the Bookmarks menu that do that, as well. Bookmarks that are
Chickenfoot scripts should appear the same as other bookmarks in the browser to provide
seamless integration.

9.2.4 Robustness

Attempt to identify when a script breaks as a result of a changein a web site.

A Chickenfoot script may suddenly stop working if aweb site changes such that a Chickenfoot
pattern no longer becomes valid. In this case, it would beideal if Chickenfoot could recognize
the error and aert the user to fix it (or even fix the script itself) rather than failing silently or
ploughing along ignoring the error, ultimately returning the wrong result.

One solution would be to store the XPath of each component identified by a patternin a
Chickenfoot script. When the script is run subsequently, Chickenfoot could calculate the tree edit
distance between the X Path of the component currently identified by the script and the X Path of
the component identified by the script the last time that the script was run. If the tree edit
distance exceeds a certain threshold, then the script should abort and warn the user that it
believes that the pattern used to identify the component may no longer be valid.

9.2.5 Extensions to Pattern Language

Support CSS patterns.

Because Chickenfoot users should be able to talk about the page on the rendered level, they
should also be able to use colors and other CSS styles to identify parts of aweb page. For
example, "green text with black background" should be avalid pattern for matching text. Asthe
DOM has references to style sheets and style data for its e ements, it should be possible to
programatically resolve CSS patterns with the elements the user is trying to identify.

Support above and bel owasrelational operators.

Users should be able to use above and bel ow as operators in the pattern language. For example,
auser should be ableto usei mage above t ext box to identify the logo on the Google home
page. Even though above and bel ow are not constraints that can be applied to the string model as
other TCs can, they should be adopted as part of the TC pattern language so their usage is
consistent with other relational operators, such asj ust bef or e and cont ai ni ng.

L et usersdefine patterns.

98

In LAPIS, users are able to define their own patternsin terms of the existing pattern language.
This functionality should be made available through Chickenfoot's interface. Care must be taken
so that users who share scripts that use patterns they have defined will be sure to deploy their
user-defined patterns with the script.

9.2.6 Extensions to Command Language

Providea simpler idiom for iterating over Match objects.
The following syntax for iterating over Mat ches would be simpler for users to read and to write:

for (min find(pattern)) {
. Il use m
}

Unfortunately, JavaScript interpreters only support this syntax for enumerating keys in an
associative array. Because only strings can be keys, it isimpossible to use this syntax for
enumerating over any other type. This presents a problem for Chickenfoot because the desired
syntax shown above is intended to enumerate Mat ch objects, not string objects. However, this
problem can be solved by rewriting every instance of this:

for (Ain B) {
}

asthis:

var b = B
if (b instanceof Match) {
for (A =Db; A hasMatch; A = A next) {

} else {
for (Ainb) {

}
}

before passing the script to the JavaScript interpreter. This rewriting would most likely have to
be performed on the abstract syntax tree (AST) of a script, which unfortunately is not exposed by
the Firefox JavaScript interpreter. Rhino [38] is an open-source JavaScript-1.5-compliant
interpreter written in Java that provides access to the AST, so hopefully it can be incorporated
into Chickenfoot to perform this translation.

Enable usersto tag semantic web data and refer to ontologiesin Chickenfoot scripts.

If aweb page contains semantic web data, then that data should be accessible and scriptable with
Chickenfoot. In general, semantic web data will be amore reliable wrapper for information in a
page than a Chickenfoot pattern will, so giving Chickenfoot users access to this wrapped data
will enable them to write more reliable scripts. Rather than creating a new system for detecting
and processing semantic web data in a page, Chickenfoot should be integrated with an existing
system, most likely Piggy-Bank [39].

99

Reduce the amount of quoting used in Chickenfoot scripts.

Chickenfoot scripts often contain many quote characters because keyword and TC patterns
appear frequently. Users aso construct HTML content from strings, which must be quoted, and
the HTML content often contains quotes, as well. This can make it difficult to read and write
Chickenfoot scripts. Ideally, quotes would only have to be used to delimit a string when string
boundaries are ambiguous.

Add support for other forms of input and output.

Users may want to read or write data from files or databases as part of a Chickenfoot script.
Though thisis possible to do by scripting XPCOM objects provided by Firefox, the interfaces for
these objects are not appropriate for end-user programmers, so they should be wrapped by
appropriate, built-in Chickenfoot commands.

9.2.7 Evaluation

Have a" bake-off" between Greasemonkey and Chickenfoot.

Chickenfoot has not been tested in aformal user study to see how it compares to other web
automation tools. Because Greasemonkey is also a Firefox extension that enables usersto
automate and customize the Web by writing JavaScript code, it is an appropriate tool to use for
comparison against Chickenfoot. Running a "bake-off" study in which users are given the same
set of tasks, some using Chickenfoot and some using Greasemonkey, would provide an estimate
on how much of an advantage the Chickenfoot language and development environment provide,
if any.

Use data from the Wayback Machineto test how robust Chickenfoot scriptsareover time.
The Internet Archive Wayback Machine [40] is a collection of 40 billion web pages archived
from 1996 onward. It allows usersto view aweb site at different points in time over the course
of its history. Chickenfoot scripts could be written to automate early versions of aweb site, and
then could be tested to seeif they still worked as the web site changed. This could aso be done
by scripts developed in other toolkits to serve as a basis for comparison of the robustness of
Chickenfoot scripts.

100

101

Appendix A Chickenscratch Reference

The following predefined objects and functions are available in Chickenscratch.

Standard JavaScript functions:

back()
forward()

Standard JavaScript objects:

w ndow
docunent
| ocation
frames

hi story
screen
st at us
top

navi gat or

Chickenscratch pattern functions:

find
bef ore
after

Chickenscratch web form functions:

click
ent er
check
uncheck
pi ck

102

Chickenscratch navigation functions:

go
fetch
openTab
sel ect Tab
cl oseTab

Chickenscratch page mutation functions:

i nsert
renove
repl ace

Chickenscratch editor functions:

out put
cl ear

Miscellaneous functions:
sl eep

Chickenfoot objects:

Mat ch

Chickenfoot types:

Pattern
Posi tion

Appendix B Partitioning HTML Tags

Thisisthelist of HTML tagsthat are considered partitioning (Section 7.1) in the keyword

pattern al gorithm:

<A>

<ABBR>
<ACRONYM>
<ADDRESS>
<APPLET>
<AREA>

<BASE>
<BASEFONT>
<BDO>

<Bl &
<BLOCKQUOTE>
<BODY>

<BUTTON>
<CAPTI O\>
<CENTER>
<Cl TE>
<CODE>
<COL>
<COLGROUP>
<DD>

<DFN>

<Dl R>

<Dl V>

<DL>

<DT>

<F| ELDSET>

<FORM>
<FRANVE>
<FRAMESET>
<Hl>

<H2>

<H3>

<H4>

<H5>

<H6>
<HEAD>
<HR>
<HTM_>

<| >

<| FRAVE>
<l M&

<| NPUT>

<| NS>

<| SI NDEX>
<KBD>
<LABEL>
<LEGEND>
<Ll >

<LI NK>
<NVAP>
<MENU>
<META>
<NOFRANES>
<NGCSCRI PT>
<OBJECT>

<OPTGROUP>

<OPTI ON\>
<pP>
<PARAM>
<PRE>
<>

<S>
<SAVP>
<SCRI PT>
<SELECT>
<SNVALL>

<STRI KE>

<STYLE>

<SuB>
<SUP>
<TABLE>
<TBODY>
<TD>
<TEXTAREA>
<TFOOT>
<TH>
<THEAD>
<TI TLE>
<TR>
<TT>
<U>

<VAR>

Bibliography

[1] Burnett, M., Cook, C., Pendse, O., Rothermel, G., Summet, J., and Wallace, C. "End-user
software engineering with assertions in the spreadsheet paradigm.” Proc. ICSE, 2003.

[2] W3C. "Document Object Model (DOM)." www.w3.0rg/DOM/.
[3] JavaScript 1.5. www.mozilla.org/jg/js15.html.

[4] Microsoft. "Smart Tags and Smart Documents."”
msdn. mi crosoft.com/office/understanding/smarttags/def ault.aspx

[5] Sugiura, A. and Koseki, Y. "Internet Scrapbook: Automating web browsing tasks by
demonstration." Proc. UIST '98.

[6] Miller, R.C. and Bharat, K. "SPHINX: a Framework for Creating Personal, Site-Specific
Web Crawlers." Proc. WMWW7, 1998.

[7] Fujima, J., Lunzer, A., Hornbaek, K., Tanaka, Y. "Clip, connect, clone: combining
application elements to build custom interfaces for information access." Proc UIST 2004.

[8] Kidtler, T. and Marais, H. "WebL — a programming language for the Web." Proc. WWWW\V7,
1998.

[9] Perl. www.perl.com/
[10] Mech. search.cpan.org/~petdance/WWW-M echanize-1.12/l1ib/WWW/M echanize.pm

[11] Anupa, V., Freire, J., Kumar, B., and Lieuwen, D. "Automating web navigation with the
WebVCR." Proc. WWW\/9, 2000.

[12] Krulwich, B. "Automating the Internet: Agents as User Surrogates.” | EEE Internet
Computing, v1 n4 (July/August 1997).

[13] Barret, R., Maglio P., and Kellem, D. "How to Personalize the Web." CHI, 1997.
[14] Ekiwi, LLC. screen-scraper: solutions for web data extraction. www.screen-scraper.com/
[15] Boodman, A. "Greasemonkey." http://greasemonkey.mozdev.org/.

[16] Chickenfoot. www.bolinfest.com/chickenfoot/.

104

[17] Miller, R.C. and Myers, B.A. "Integrating a Command Shell into a Web Browser." Proc.
USENIX, 2000.

[18] LiveConnect. http://www.mozilla.org/js/liveconnect/.
[19] Friedl, J. Mastering Regular Expressions. O'Reilly, 2002.
[20] Regular Expression Library. http://www.regexlib.com/Search.aspx?k=email

[21] Screen-Scraper extractor patterns. www.screen-scraper.com/support/docs/
using_extractor_patterns.php

[22] W3C. "XML Path language (X Path) Version 1.0," 1999.
[23] GreaseM onkeyUserScripts. http://dunck.us/collab/GreaseM onkeyUser Scripts/
[24] Webber, Matthew. "Automatic Web Page Concatenation.” MIT AUP, 2005.

[25] Rha, Philip. "Detecting and Parsing Embedded Lightweight Structure.” MIT MENg Thesis,
2005.

[26] Karger, et a. Haystack project. http://haystack.csail.mit.edu/

[27] Mozilla "XML User Interface Language (XUL) Project.”
http://www.mozilla.org/projects/xul/

[28] Aasted, H. and Palant, W. Adblock. http://adblock.mozdev.org/

[29] Navarro, Gonzalo. "A guided tour to approximate string matching." CSUR, v33 nl (March
2001).

[30] W3C. "XHTML 2.0," 2004.

[31] Document Object Model Range. http://www.w3.org/TR/DOM-Level-2-Traversal-
Range/ranges.html

[32] Document Object Model Range diagram. http://www.w3.0rg/ TR/DOM-Level-2-Traversal-
Range/ranges.html#L evel-2-Range-Position

[33] Flanagan, D. JavaScript: The Definitive Guide. O'Reilly, 2001.

[34] Holovaty, Adrian. "Greasemonkey compiler.”
http://www.hol ovaty.com/bl og/archive/2005/04/24/2227

[35] Faaborg, Alex. 6.831 Final Report, 2004.

105

[36] UDDI. http://www.uddi.org/

[37] StarLogo. http://education.mit.edu/starlogo/

[38] Mozilla. "Rhino: JavaScript for Java." http://www.mozilla.org/rhino/.

[39] Hyunh, David. "Piggy-Bank." http://simile.mit.edu/piggy-bank/index.html

[40] Wayback Machine. http://www.waybackmachine.org/.

106

